Guru - A Tool for Automatic Restructuring of Self

Inheritance Hierarchies

Ivan Moore

Department of Computer Science,
University of Manchester, Oxford Road,
Manchester M13 9PL, England

Abstract

This paper! introduces Guru, a prototype tool
for restructuring inheritance hierarchies in Self,
while preserving the behavior of objects. Guru
reverse engineers from existing inheritance hier-
archies. Unlike previous work, Guru handles re-
sends, redefined methods and the restructuring of
only part of a system. Furthermore, Guru handles
dynamic and cyclical inheritance, which are more
specific to Self. Guru removes duplicated meth-
ods, and can create inheritance hierarchies with
no overridden methods. The results of two non-

trivial tests are presented and assessed.

1 Introduction

Some object-oriented design methods encourage
the designer to think of the inheritance hierarchy
very early in the production of a software system.
Many developers think of the inheritance hierar-
chy as basically static; they will add new classes,
but are reluctant to restructure it. This is not sur-
prising, as restructuring inheritance hierarchies is
difficult. Guru is a prototype reverse engineer-
ing tool which can automatically restructure an
inheritance hierarchy into an optimal one for the
objects currently in the system, whilst preserving

Tpublished in TOOLS USA 1995, Prentice-Hall

the behavior of programs.

The optimal inheritance hierarchy for a sys-
tem depends on the current design of the system,
which in turn depends on the current requirements
of the system. It is impossible to predict future
requirements. The software development process
is iterative, whether it is planned to be or not.
Therefore, as the design of the system changes to
satisfy changing requirements, the inheritance hi-
erarchy will require restructuring if it is to remain
optimal. By providing a tool to automate restruc-
turing, it is hoped that more frequent restructur-
ing is encouraged and made feasible. Guru is de-
signed so that it can be used on part of a system,
rather than having to restructure an entire sys-
tem. Guru can be used automatically but is more
usefully employed as part of a broader approach.

Guru can only restructure non-reflective sys-
tems. Reflective programs depend on the struc-
ture of their objects. Changing the structure
of objects involved in a reflective program can
change the behavior of those reflective programs.
As Guru is intended not to change the behavior
of programs, it can only be used safely for non-
reflective systems.

Guru has been developed in Self[Ungar 87], for
restructuring Self systems. Self was chosen as
the language to investigate object-oriented pro-
gram restructuring because object manipulation
in Self is powerful and easy to use. Further-
more, Self is a simple, consistent and power-
ful language. Other work[Casais 90][Hoeck 93]-
[Lieberherr 91][Opdyke 92][Pun 89] uses the term
‘class hierarchy’, but as Self is classless, the term
‘inheritance hierarchy’ is used in this paper. The
restructuring system has been called Guru, be-
cause it assists in Self improvement.

This paper introduces some of the features
of Self, and inheritance hierarchy restructuring
(IHR). This is followed by descriptions of some
of the details of how Guru restructures Self in-
heritance hierarchies. Finally, there are sections
covering the limitations and problems of the ap-
proach taken, the results obtained, future work to
improve Guru, and concluding remarks.

1.1 Self

Self[Ungar 87] is an object-centric programming
language, originally developed at Stanford Univer-
sity and Xerox PARC (by David Ungar and Ran-
dall Smith), and more recently at Sun Microsys-
tems Laboratories.

Self is dynamically typed, which means that the
inheritance hierarchy is not used as a typing hi-
erarchy, i.e. to constrain the compatibility of ob-
jects, but rather as a means of sharing behavior
or data.

Self objects contain methods, data and their in-
heritance links in slots. Slots used for inheritance
links are called parent slots. Data slots and par-
ent slots can be either read only, or read and write
(also called assignable slots). Assignable parent
slots are used to implement dynamic inheritance.

Self is object-centric, that is, there are only ob-
jects, not classes and objects. Objects inherited
from are known as ‘parents’ of the objects which
inherit from them. Parent objects are the same as
any other objects, and an object can inherit from
any other object. Self even allows cycles in the in-
heritance hierarchy; an object can inherit from an
object which inherits from itself. There are mul-
tiple roots of the inheritance hierarchy. An object
does not have to inherit from any other object; it
can be totally self-contained.

Objects are created by copying, rather than by
making an instance of a class, thus removing any
necessity for classes.

In application programs, reflection is discour-
aged, and separated from normal objects into
meta-objects called mirrors. What is most impor-
tant about an object is how it responds to mes-
sages, rather than anything to do with how it is
implemented, including its structure.

1.2 Inheritance Hierarchy Restructur-
ing

The simplest way to describe the THR done by
Guru is through an example. The inheritance hi-
erarchy shown in Figure 1 can be restructured by
Guru into the inheritance hierarchy shown in Fig-
ure 2. Other restructurings are possible, but Guru
aims to produce ‘optimal’ inheritance hierarchies,
in that no slot is duplicated and there are the min-
imum number of objects and inheritance relation-
ships required for such an inheritance hierarchy.
Fewer objects and fewer inheritance relationships
are possible if slots are duplicated. In the figures,
slots with the same name have the same value un-
less stated otherwise. Note that slots m1, m7 and
m8 are duplicated in the example shown in Fig-
ure 1, but the restructured inheritance hierarchy is
‘optimal’ in that no slots are duplicated. The ob-
jects in the restructured inheritance hierarchy ol#
to 0b# have the same behavior as the objects ol
to 0h, and so can be used to replace them. Objects
which have the same behavior after restructuring
are called ‘preserved’ objects in the rest of this pa-
per. Section 2.1 explains why objects ol to 05 are
the only preserved objects.

0l0
mi15

This represents an object called ‘010’

which has a slot (method or data) called ‘m15'.
To simplify the figures, slots are shown as
only the name of the slot, and two slots with
the same name are equal in these examples.
An arrow represents inheritance. In the
example below, ol inherits from t1.

t3
m4
t1 t2
ml, m2 m1, m3
o4
m5 m6 m7, m9 m7, m8, m10| m8, m1l

ol ‘

03 ‘

05 ‘

Figure 1: Example inheritance hierarchy

ol# ‘

Figure 2: Example restructured inheritance
hierarchy

2 Guru’s restructuring process

This section describes how Guru performs IHR; by
determining which objects need to be preserved,
building restructured objects, and relating them
back to the original objects. Details of how Guru
handles dynamic inheritance and cycles in the in-
heritance hierarchy are beyond the scope of this
paper, as these features are not common in object-
oriented languages other than Self.

2.1 Identifying which objects to pre-
serve

In order for the restructuring to preserve the be-
havior of the system, all of the objects which must
be preserved need to be identified. In order to ben-
efit from as much restructuring as possible, only
those objects which must be preserved should be
identified. Therefore, the preserved objects iden-
tified should include all necessary objects but no
more, in order not to limit the number of objects
which can be restructured and hence the effective-
ness of the restructuring.

Some simple heuristics are applied by Guru to
determine which objects should have their behav-
ior preserved. These heuristics partly rely on the
way that Self systems are structured. Objects
which do not have children, i.e. leaves of the inher-
itance hierarchy, represent concrete objects, or ‘in-
stances’ as they would be called in a class-centric
programming language. At least these objects
need to be preserved. This is the case in the ex-
ample used in section 1.2 (see Figures 1 and 2).

Guru uses other heuristics to identify more ob-
jects which need to be preserved. In practice
these heuristics have been adequate. However,
a more accurate way to determine which objects

to preserve would be to use sophisticated type
inferencing[Agesen 95] to identify which objects
are sent any messages.

2.1.1 The ‘traits’ object problem

There is a common situation which causes more
preserved objects to be identified than desirable,
unnecessarily limiting the amount of restructuring
that can take place. Many parent objects are re-
ferred to by non-parent slots as a convenient way
to refer to them while developing a system. There
is an object in the standard system, called the
‘traits’ object, which exists for this very purpose.
The name ‘traits’ is used to mean the shared be-
havior of objects, that is, their shared parent ob-
ject. For example, ‘traits set’ is used to refer to
the parent object of all ‘set” objects. Such non-
parent references do not affect non-reflective pro-
grams. If such parent objects are to be restruc-
tured by Guru, their non-parent references must
be removed otherwise they will not be restruc-
tured. After restructuring, new non-parent ref-
erences can be reintroduced by the programmer if
this is required.

In general, it is not possible for the system to
automatically decide which non-parent references
it should remove, other than removing all of them,
which may not be desirable. Furthermore, it is not
possible for the system to automatically rebuild
new non-parent references after restructuring, not
least because the system cannot invent meaningful
names for the newly created objects. The non-
parent references to parent objects are considered
bad style by some[Ungar 94], as not only are they
reflective but they also indicate a class-centric way
of thinking, contrary to the philosophy of Self.

2.2 Restructuring part of a system

Guru is designed so that it can be used on part of
a system, rather than having to restructure an en-
tire system. Restructuring only part of a system
avoids changing things which one does not want to
have changed. A reason for wanting only part of
a system to change is to avoid the benefits of a re-
structured system being outweighed by the effort
to learn about the restructured version of the sys-
tem. Furthermore, restructuring only parts of a
system is faster than restructuring the entire sys-
tem, which may take too long to be feasible.

The user manually specifies what should be in-
cluded in the restructuring. However, the system
should check whether all the children of these ob-
jects are included, as their parents might not exist
after restructuring. An example is shown in Fig-
ure 3. If there is a reason why a child should not be
included, for example, if there are too many chil-
dren of an object to include all of them, the parent
object must be preserved so that its children still
have a parent. The result of restructuring the hi-
erarchy in Figure 3 is shown in Figure 4.

1 Objects included in restructuring
‘ B

Figure 3: Example where child is not included in
restructuring

In this example, A# does not
define any unique slots except
| its parent slot - T1.
T1 A# only exists as a replacement
m1, m2 © for A, so that C still has a
! suitable object for its parent.
i Ccould use T1 instead of A#,
i but the algorithm used creates
| unique objects to replace every
preserved object.
! Objects similar to A# can be
| spotted and removed
i automatically.

! Result of restructuring

A# ‘

Object not included in
restructuring

Figure 4: Result when A is included as a
preserved object

Restructuring only part of a system can result
in ambiguous message sends being introduced, as
shown in Figure 5. Any ambiguities introduced
can be spotted and removed by automatically
adding disambiguating methods.

ml

Slot m1 has the same
value in objects A and B,
but may be different in
object C.

Object A inherits from
object C and redefines
slot m1.

A multiple inheritance
ambiguity is introduced
for Object A#

A# ‘

Figure 5: Ambiguities introduced by
restructuring.

2.3 Guru’s approach to restructuring

Having decided which objects to include in the re-
structuring, and which objects will be preserved,
Guru creates a restructured inheritance hierarchy.
The approach used by Guru is firstly to ‘flatten’
the preserved objects, by copying into them all
their inherited slots. For example, for the objects
shown in Figure 1, the ‘flattened’ preserved ob-
jects are those shown in Figure 6.

ol 02 03 04 05
ml, m2, m5 ml, m2, mé ml, m3, m4 ml, m3, m4 m4, m8, m11
m7, m9 m7, m8, m10

Figure 6: Example problem flattened preserved
objects

An algorithm which solves the problem of creat-
ing an inheritance hierarchy for flattened objects is
then applied. The algorithm ensures that equiva-
lent slots in different objects are shared, by group-
ing those slots into objects, and making the ob-
jects which include those slots inherit from these
grouping objects. Details of the algorithm are not
included in this paper.

The way that equivalence of slots is decided has
very significant implications. In Guru’s restruc-
turing, slots are only equivalent if they have the
same name and the same value. The values of
two methods are the same if their parsed versions
are the same. This is conservative as it misses
cases where methods have the same effect but are
written slightly differently, which is known to be
an undecidable problem. Assignable slots are only

equivalent if they are identical. That is, two differ-
ent assignable slots can have the same name and
the same current value, but are not the same slot.

Flattening objects has some benefits but also
some problems. The most significant feature of
‘flattening’ is that all overridden slots are thrown
away. This is beneficial, because the resulting in-
heritance hierarchy after restructing will have no
overridden slots, eliminating slots which are un-
used because they are always overridden and sim-
plifying the resulting system. Having many slots
overridden, or slots overridden many times, is of-
ten an indication of poor inheritance hierarchy
design[Johnson 88].

Methods with resends are treated in a simple
but effective way. A resend causes method lookup
to start in a parent of the object where the method
containing the resend is defined. Resends in meth-
ods would be meaningless if nothing was done
about them, as in the ‘flattened’ object there is
no parent for the resend to refer to. A simple so-
lution to the problem of resends is to get rid of
them. Resends to non assignable parents are stat-
ically determinable, so a resend in a method is
replaced by a message send for a uniquely named
method, which is created as a copy of the method
which will be called and included as one of the
slots of the flattened object. The renamed meth-
ods created in this way are shared by IHR amongst
all the objects which call it by a resend in one of
their methods. Figure 7 shows an example of how
resends are flattened.

method ‘y’ in object A is

distinguished from method 'y’ in
object B, by use of unique names

B - .
x = (xStuff) y = (otherYStuff) determined by (I:onca.tenatmg the
y = (yStuff) name of the object with the name
of the method.
Z#
Z objectA_y = (yStuff)
aparent . objectB_y = (otherYStuff)
bParent flattens into

objectA_x = (xStuff)
m = (objectA_x.
objectA_y - objectB_y.
non - resend stuff)

m = (resend.x.
aParent.y - bParent.y.
non - resend stuff)

Figure 7: How resends are ‘flattened’

Resends to assignable parents, which are not
statically determinable, are also handled by Guru,
but this is beyond the scope of this paper.

2.4 How to describe the results of a re-
structuring

The restructured system may be significantly dif-
ferently in structure to the original system. There-
fore, to make the restructured system easier to
understand, a description is required of the rela-
tionship of the original system to the restructured
system, and vice-versa.

Preserved objects can be mapped directly to
restructured objects with the same behavior but
modified inheritance hierarchies. More sophisti-
cated mappings can be constructed, for example,
relating a slot in the original system to a slot in the
restructured system. The slots which were dupli-
cated in the original hierarchy can also be found,
along with their replacements. To relate a non-
preserved object from the original system to the
objects in the restructured system, all the slots of
the original object can be related individually to
the slots which replace them, but they are likely to
be split over several objects. In the restructuring
shown in the section 1, the system could report,
for example:

e Object ol is replaced by ol#

e Slot m1 in t1 and m1 in t2 are both replaced
by m1 in t5

e Slot m2 in t1 is replaced by m2 in t4

Object t2 is replaced by m1 in t5 and m3 in
t6

Object t3 is replaced by t7

3 Complementary techniques

The THR described is reasonably fast to perform,
but nevertheless it would not be desirable to do it
every time that the system is changed. Program-
mers get used to the inheritance hierarchy, and
so changes should not be made too often. There-
fore other techniques can be employed, which are
faster and incremental, but do not necessarily pro-
duce optimal hierarchies or handle all situations,
such as overridden methods or resends[Hoeck 93].
For example, when a slot is added to an object, a
check can be made to see if it is defined elsewhere
in the system. If an equivalent slot to the one be-
ing added is inherited by a ‘sibling’ object then it

may be possible to move the slot into a common
parent, thus removing the duplication of the slot.

4 Results

Guru has been applied to some Self objects to eval-
uate the restructuring approach taken. In order to
make a fair evaluation, two groups of objects were
restructured, one group which was representative
of well written Self code, and another which was
written by a novice Self programmer.

4.1 Collection objects

The group of objects representing well written Self
code comprised of 17 objects from the collection
objects inheritance hierarchy. They are an almost
self-contained inheritance hierarchy of ‘vector-like’
objects; the names of the objects and the number
of slots they define are shown in Figure 8.

Note that traits canonicalString, traits muta-
bleString, traits byteVector and traits vector have
many children in the standard image as well as
those shown in the figure. It was assumed that
traits sequence and traits sortedSequence would
also normally have many children other than those
shown. These objects which have children, or are
assumed to have children, not included in the re-
structuring, were included as preserved objects.

traits collection

Objects included in the restructuring traits indexable(26)

traits mutablelndexable(18)

traits
sequence(38)

traits
vector(11)

traits

traits sending(33) byteVector(30)

traits
sortedSequence(38)

traits string(90)
raits

traits
immutableString(6) mutableString(6)
traits canonicalString(6)

canonicalString mutableString byteVector vector sequence sortedSequence
0) (0% ©) (©} 49 (59
Numbers shown in brackets after the object's name are the number of slots
defined by the object.

* indicates that a slot was removed manually due to a problem caused by
reflection (thisObjectPrints)

Figure 8: The collection objects inheritance
hierarchy

Guru took 45 seconds on a Sun 5 to restructure
these objects into the inheritance hierarchy shown
in Figure 9.

traits collection

traits
sequence

()

T T T T T T

canonicalString mutableString byteVector vector sequence sortedSequence
0 0 0) 0) (O] ®)
Numbers shown in brackets after the object’s name are the number of slots
defined by the object.

Objects which do not have a name are shown as a circle with the number
of slots defined inside.

traits
vector
9)

traits traits traits
canonicalString mutableString byteVector
(14) ®) ©)

traits
sortedSequence
®)

Figure 9: Initial result of restructuring collection
objects

The initial result looks over-complicated, and
does not seem to be an improvement. However,
further investigation revealed that some simple al-
terations could improve the inheritance hierarchy.
It was found that there were five slots in the orig-
inal objects which redefined slots unnecessarily,
that is they redefined slots without making any
change to the slot definition. These redefinitions
were not removed by Guru because they redefined
methods inherited from objects not included in
the restructuring. These slots were removed man-
ually. Code has now been added to find such slots
automatically.

The original objects also included two comment
slots which were essentially reflective, as they lit-
erally comment on the structure of the inheritance
hierarchy. These slots were also removed, as they
do not affect the behavior of the objects.

Having removed these slots, the objects were re-
structured again. After restructuring, one method
was manually moved up the inheritance hierarchy.
This method was the only slot of an object which
was used for sharing it by multiple inheritance be-
tween two objects. By moving the method up the
inheritance hierarchy, the two objects still inher-
ited it, and a third object redefined it. This was a
case where having a slot redefined led to a neater
inheritance hierarchy than having no slots rede-
fined. Ambiguous message sends were introduced
by the restructuring, as explained in section 2.2,

and were easily remedied by hand, but at the ex-
pense of adding 8 trivial disambiguating methods.
If traits collection did not define slots which have
to be redefined by objects included in the restruc-
turing, then 8 slots would have been removed by
the restructuring. The resulting inheritance hier-
archy is shown in Figure 10.

traits collection

traits traits traits traits traits traits
canonicalString mutableString byteVector vector sequence sortedSequence

(©) (11) ()

canonicalString mutableString byteVector vector sequence sortedSequence
0 (V] 0)) (O] ®)
Numbers shown in brackets after the object’'s name are the number of slots
defined by the object.
Objects which do not have a name are shown as a circle with the number
of slots defined inside.

Figure 10: Final result of restructuring collection
objects

Relevant statistics comparing the original inher-
itance hierarchy to the final restructured inheri-
tance hierarchy are given in the following table.

Number in: Original | Restructured
hierarchy | hierarchy

Objects 17 19

Non-parent slots || 282 282

Slots redefined 35 1

within hierarchy

The restructured objects were then used to re-
place the original objects, and, although not fully
tested, appeared to behave in the same way as the
original objects.

4.2 A simple game

A group of objects in a simple game, written by a
novice Self programmer, were restructured using
Guru. The behavior of the game was unaffected
by replacing the original objects with the restruc-
tured objects. For this program, the inheritance

hierarchy was just as complicated after restruc-
turing as before. An interesting feature of the
restructured inheritance hierarchy produced was
that it revealed certain faults in the original de-
sign. In particular, over-use of inheritance had
led to inappropriate slots being inherited by some
objects. It was apparent that the design needed a
major change by an experienced Self programmer.
Much of the behavior of the objects would have to
change to improve the design, which is beyond the
capabilities of Guru. Statistics concerning the re-
structuring are presented in the table below.

Number in: Original | Restructured
hierarchy | hierarchy

Objects 32 32

Non-parent slots || 110 103

Slots redefined 14 0

within hierarchy

5 Limitations and Problems

As previously mentioned, Guru cannot restructure
reflective code. This is because reflective code re-
lies on the structure of the system, rather than
only on its behavior. There appears to be no sim-
ple solution to this, except to encourage the style
of avoiding reflection in application code.

The initial results using Guru appear to sup-
port the claim that restructured systems can be
easier to understand. However, restructured sys-
tems and objects may bear so little resemblance
either to the original system or to any concepts
that are understood by the programmer or de-
signer that the restructured system will be very
difficult to understand. The inheritance hierar-
chy is abstracted from objects that exist in the
system at the time that the restructuring is per-
formed. This means that abstractions are made
from what actually exists, rather than from the
thoughts of the designer or programmer. This can
be advantageous because the system as it exists
contains the actual implicit design. The disad-
vantage is that it is only a snapshot of the design,
and so may not reflect the ‘long term design’ but
rather an unrepresentative version of the design
due to the particular circumstances of that stage
of the development of the system. Another dis-
advantage is that abstractions reverse engineered
from the system may not match recognisable real

world abstractions.

An optimal solution to the hierarchy restruc-
turing problem has been shown to be NP-
Hard[Lieberherr 91]. The algorithm used by Guru
has performance which is adequate for problems
of approximately 100 objects or less. This is not
thought to be a problem, as the most satisfactory
way to use Guru would seem to be for objects
which together make a ‘module’ of some sort, that
is a small collection of objects related in some way
(but not necessarily by inheritance).

6 Future Work

Guru is not yet a complete system; the central
IHR has been implemented but many of the sup-
port tools have not yet been implemented; for ex-
ample, describing the results of restructuring, as
mentioned in section 2.4.

There are improvements which can be made
to the results produced by Guru.
ple, resends are currently removed by the ‘flat-
tening’ process described in section 2.3, leading to
methods with unnatural names being introduced.
Some of these methods could be renamed by re-
introducing resends where appropriate.

For exam-

The results in section 4.1 indicate that neater
inheritance hierarchies can be achieved in some
cases when slots are overridden. As Guru creates
inheritance hierarchies with no overridden slots,
it sometimes misses the possibility of neater in-
heritance hierarchies. Creating neater inheritance
hierarchies by having some slots overridden is an
area that requires further investigation.

Furthermore, the results in section 4.1 show
that ambiguities introduced by IHR can reduce
the effectiveness of Guru at minimising the to-
tal number of slots, by requiring slots to remedy
the ambiguities. Including more objects in the re-
structuring reduces this problem, but one of the
aims of Guru is to be able to restructure only part
of a system. How to avoid ambiguities being intro-
duced, and hence avoiding the addition of trivial
disambiguating methods, is an area of future re-
search.

Inappropriately inherited slots could be re-
moved by the programmer redefining them as
‘shouldNotImplement’, in the style of Smalltalk.
Then, before creating the restructured inheritance
hierarchy, Guru could remove all ‘shouldNotIm-

plement’ slots from the ‘flattened objects’ it cre-
ates. This would then result in an inheritance hi-
erarchy in which there are no inappropriately in-
herited slots and no ‘shouldNotImplement’ slots.

The inheritance hierarchy is only one aspect of
an object oriented program, and hence only one
aspect which will require restructuring. There-
fore, THR is not proposed as a full solution
to all restructuring requirements. In particu-
lar, other restructurings should be applied both
before and after IHR to achieve the best re-
sults. Casais[Casais 90] summaries other ap-
proaches which assist in improving a class hierar-
chy, which can be applied in conjunction with the
approach described in this paper. For example,
replacing case analysis with polymorphism by in-
troducing new subclasses[Opdyke 92] will have an
effect on the results of IHR, but is not part of the
restructuring described in this paper. Similarly,
the result of IHR can also be improved afterwards.
In particular, some of the new parent objects cre-
ated may be too large and lack cohesion, hence
require restructuring. The factoring of common
parts of methods, rather than complete methods,
can be integrated into Guru to further improve
the results. Furthermore, the application of other
restructuring techniques, for example those devel-
oped for class-centric and non object oriented sys-
tems, can be investigated for object-centric sys-
tems. Work is continuing in these areas for the
restructuring of Self programs.

An important area not yet addressed is that
of the user interface for restructuring tools for
Self. The latest Self user interfaces emphasise
direct manipulation of objects, rather than the
tool-oriented user interface style of Smalltalk. Re-
search into the integration of restructuring tools
into such a style of interface is required.

7 Conclusions

Inheritance hierarchies evolve, and hence need
continual, occasional restructuring to keep them
well designed. Many developers are reluctant to
restructure inheritance hierarchies manually. This
is not surprising, as restructuring inheritance hi-
erarchies is difficult.

Guru tackles the problem of automatically re-
structuring an inheritance hierarchy, while pre-
serving the behavior of programs. Firstly, copies

of the objects to be restructured are created, in
which the inheritance hierarchy is thrown away,
removing overridden slots and resends. Then, a
replacement inheritance hierarchy is built which
ensures no duplication of slots.

Initial results have shown that the inheritance
hierarchies produced by Guru are easy to under-
stand when restructuring well written code. For
poorly written code, inheritance hierarchies cre-
ated by Guru can assist the programmer in iden-
tifying the faults of the original design.

Work is continuing on improving Guru.

Acknowledgements

The author would like to thank the EPSRC for
funding this work, George Paliouras and Richard
Banach for their useful discussions about the algo-
rithm used for creating optimal inheritance hier-
archies, and Jon Taylor, Mario Wolczko and Tim
Clement for their comments on this paper. Many
thanks also to Trevor Hopkins for supervising the
first year of my PhD studies, and the Self group
for interesting discussions about all aspects of the
Self system.

References

[Agesen 95] Ole Agesen
The Cartesian Product Algorithm
Proceedings of ECOOP (1995)

[Casais 90] Eduardo Casais
Managing Class Evolution in Object-Oriented
Systems
Object management, Centre Universitaire
d’Informatique, Geneve (1990)

[Hoeck 93] Bernd H. Hoeck
A Framework for Semi-Automatic Reorgani-
sation of Object-Oriented Design and Code
University of Manchester (1993)

[Johnson 88] Ralph E. Johnson, Brian Foote
Designing Reusable Classes
Journal of Object-Oriented Programming,
pp22-35, June-July (1988)

[Lieberherr 91] Karl J Lieberherr, Paul Bergstein,
Ignacio Silva-Lepe
From objects to classes: algorithms for opti-
mal object-oriented design
Software Engineering Journal Vol 6 (1991)

[Opdyke 92] William F. Opdyke

Refactoring Object-Oriented Frameworks
University of Illinois at Urbana-Champaign

(1992)

[Pun 89] Winnie W. Y. Pun, Russel L. Winder

Automating Class Hierarchy Graph Construc-

tion

Technical Report, University College London

(1989)

[Ungar 87] David Ungar, Randall B. Smith

Self: the power of simplicity
Proceedings of OOPSLA (1987)

[Ungar 94] David Ungar
self-interest@self.stanford.edu
(1994)

mail

group

