AUTOMATIC RESTRUCTURING OF
OBJECT-ORIENTED PROGRAMS

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

October 1996

By
Ivan Ronald Moore

Department of Computer Science

Contents

Abstract 7
Copyright Notice 10
Acknowledgements 11
1 Introduction 13
1.1 Structure of the thesis 14

2 Background 17
2.1 Object-oriented programming 17
2.1.1 Objects 18

2.1.2 Inheritance and classes 18

2.1.3 Message sending polymorphism 19

2.2 Object-centric programming 19
2.3 The Selflanguage Lo 20
23.1 Resends 30

23.2 Modules 31

2.3.3 The Self 4.0 User Interface 31

2.3.4 Mirrors and reflectiono 32

235 Blocks 33

23.6 Delegationo 34

2.3.7 Other technicalities 35

2.4 Example of program deterioration and restructuring 37
Automatic Inheritance Hierarchy Design 41
3.1 Introduction 42
3.2 Criteria for an inferred inheritance hierarchy 43
3.3 The inheritance hierarchy inference algorithm 48
3.4 An implementation of the inheritance hierarchy inference algorithm 54
3.5 Reintroducing overriding into inferred hierarchies 29
3.5.1 Identifying default implementations 61
3.5.2 Removing anomalous traits objects 66
3.5.3 Removing empty traits objects. 68
3.6 Limitations and problems 70
3.7 Applications of the inheritance hierarchy inference algorithm . . . 70
3.8 Comparison with previous work 71
3.8.1 Bergstein, Lieberherretal 72
3.8.2 Cook 74
383 Dickyetal. oL 75
384 Godinetal oo 76
3.8.5 Light 7
3.8.6 Punand Winder 7
387 Wolff 79
3.9 Summary 79
Inheritance Hierarchy Restructuring 80
4.1 Introductiono 81
4.2 Preserving the behaviour of a system 83
4.2.1 Identifying which objects to preserve 83
4.3 Restructuring part of asystem 86
4.3.1 Introduction of ambiguities. 90
4.3.2 Consequences of preserving traits objects 92

4.3.3 ‘Cracking’, and including copies of leaf objects 95

4.4 Removing existing hierarchies 99
4.4.1 Equivalence ofslots L. 101
4.4.2 Removal of ‘place holders” 104
4.4.3 Removal of cyclical inheritance 106
444 Removalofresends 107

4.5 Applying an inheritance hierarchy inference algorithm 111

4.6 Replacing original objects with restructured objects 112

4.7 Reintroducing resendso L0000 L 115

4.8 Describing the results of restructuring 118

4.9 Limitations and problems 119

4.10 Applying inheritance hierarchy restructuring to other languages . 121

4.11 Comparison with previous work 122
4111 Casaiso e e 122
4.11.2 Chae e 123
4.11.3 Hoeck 124
4.11.4 Lieberherr and the Law of Demeter 127
4115 Opdyke o 127
4.11.6 The Smalltalk Refactory 128
4.11.7 Pedersen 128
4.11.8 Zimmero 129
4.11.9 Other related work o oL 129

4.12 Summary e e e 130

Refactoring expressions from methods 131

5.1 Introductiono 132

5.2 The expressions which could be factored out 133

5.3 The expressions which are factored out 135

5.4 Alternative ways of factoring out common code 138
5.4.1 Refactorings applicable to complete methods 141

5.5 Combining method refactoring with inheritance hierarchy restruc-

turing 144
5.6 Limitations and problems L0 L. 148
5.7 Applying method refactoring to other languages 153
5.8 Comparison with previous work 154
5.8.1 Opdyke 154
5.8.2 Other related work 154
5.9 Summary 155
Results 156
6.1 Experimentso e 156
6.2 Results. 159
6.2.1 The indexables hierarchy 159
6.2.2 The orderedOddballs hierarchy 166
6.2.3 The polygons hierarchy 170
6.2.4 The sendishNodes hierarchy 177
6.2.5 The samplers hierarchy 181
6.3 Analysisofresults., 183
6.4 Summary L e 188
Complementary Tools 189
7.1 User interaction with restructuring and analysis tools 190
7.1.1 Using as little programmer interaction as possible 193
7.1.2 Programmer driven interaction 195
7.1.3 Programming environment driven interaction. 203
7.1.4 Comparison with previous work 206
7.2 Removing unnecessary code L. 207
7.2.1 Dynamic Analysis Stripper 207
7.2.2 Comparison with previous work 209
7.3 Summary ... oL L e 210

8 Conclusions 211

8.1 Critique and suggestions for further work 212
Bibliography 219
A Formal descriptions of the IHI algorithm 229

A.1 A formal description of the criteria for inferred hierarchies 229

A.2 A formal definition of the inheritance hierarchy inference algorithm 233

A.3 Complexity of the inheritance hierarchy inference algorithm . . . 235

Abstract

This thesis shows that automatic restructuring improves object-oriented pro-
grams. Most programs are imperfectly designed, and their imperfections tend
to increase with maintenance and evolution. Even object-oriented programs suf-
fer from these faults, and so are more expensive to maintain, harder to understand
and larger than necessary. This thesis explores automatic restructuring of object-
oriented programs in the language Self, and describes the implementation of a
restructuring tool called Guru.

Many forms of restructuring are possible. This thesis describes an algorithm
for creating inheritance hierarchies from object definitions. Solutions are given
to problems which arise when applying such an algorithm to restructuring actual
programs. Inheritance hierarchies can be restructured by Guru into equivalent
ones in which there are no duplicated methods.

Furthermore, Guru can refactor shared expressions from methods at the same
time as restructuring a hierarchy, resulting in hierarchies in which no methods,
and none of the expressions that can be factored out, are duplicated.

Results from applying Guru to real Self code are described. Restructured
programs are smaller, more consistent and have better code reuse than the original
programs. Inheritance hierarchies resulting from the application of Guru have
exactly the structures that should be expected of well designed hierarchies. Guru
is shown to preserve the behaviour of programs, by replacing original objects with
their equivalent restructured objects.

Previous work on restructuring object-oriented programs has considered only

class-centric languages. This thesis explores the restructuring of programs in Self,
an object-centric language.

Complementary tools which provide program analyses and restructurings, use-
ful both in combination with and separately from Guru, are described, and the

way that a user can interact with such tools is considered.

DECLARATION

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

Copyright Notice

1. Copyright in text of this thesis rests with the Author. Copies (by any
process) either in full, or of extracts, may be made only in accordance
with instructions given by the Author and lodged in the John Rylands
University Library of Manchester. Details may be obtained from the
Librarian. This page must form part of any such copies made. Fur-
ther copies (by any process) of copies made in accordance with such
instructions may not be made without the permission (in writing) of the

Author.

2. The ownership of any intellectual property rights which may be described
in this thesis is vested in the University Of Manchester, subject to any
prior agreement to the contrary, and may not be made available for use
by third parties without the written permission of the University, which

will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation

may take place is available from the Head Of Department of Computer Science.

10

Acknowledgements

I would like to thank the EPSRC for funding this work. I am very grateful
to my ex-supervisors: to Trevor Hopkins for enthusing me about objects and
program restructuring, to Mario Wolczko for introducing me to Self and for his
continued assistance despite being thousands of miles away, to Jon Taylor for
suggesting that I ‘wrote some papers and did some science’, and to Tim Clement
for mathematically confirming the properties of the central algorithm, and my
current supervisor Chris Kirkham for his support in writing this thesis.

I am also indebted to the Self group, in particular, Ole Agesen, Randy Smith,
Dave Ungar and Mario Wolczko, for advice and informative discussions about
the Self system, and for making the world safe for objects. Many thanks also to
Richard Banach, Carole Goble, Sean Bechhofer, George Paliouras and Eduardo
Casais for their comments on the central algorithm used, and to James Noble,
Marianne Huchard and Daniel Bardou for their comments on the restructuring
tool produced for this work. I also thank my family and friends for their under-
standing and support during my studies at Manchester University; in particular
my fiancée Linda, my mother Jean, my brother Dug, sisters Sue and June, in-laws
George, John and Irene, and all my friends, including Phran, Mashhuda, Dan,
Bernd, Zoltan, John, Dimitri, Derek, Stuart, Alan, Julie, Ann, Richard ... and

many more.

11

The Author

The author obtained a Bachelor of Science degree in Computer Science from the
University College of Wales, Aberystwyth, in 1989, and a Master of Science degree
in System Design from the University of Manchester in 1993.

12

Chapter 1

Introduction

The software development process is iterative, whether it is planned that way or
not. The optimal design of a system depends on its current requirements. As
requirements inevitably change, a system will evolve, requiring restructuring if
it is to remain well designed. It is impossible to predict future requirements, so
attempts to design in a way that allows for change cannot be entirely successful.
Even if a system is initially well designed, subsequent extensions and modifica-
tions may turn out to be best handled by radical restructuring, and this seldom
happens. Many programmers are reluctant to restructure a system manually, as
this can be very difficult, particularly if the system is large and has been built by
many different programmers. For large systems, no one programmer may under-
stand the whole system at a sufficiently detailed level to restructure it. Manual
restructuring is also error prone and, if a system works, however badly structured
it is, the temptation is to leave it alone. Even in the basic libraries of object-
oriented languages there is often scope for improvement [Cook92, Meyer90]. One
of the distinguishing features of the most productive programmers is that they
spend considerable effort in perfecting and modifying code [Brooks87]. By au-
tomating restructuring, it is hoped that more frequent restructuring is encouraged
and made more feasible.

The iterative and evolutionary nature of developing software has motivated

13

CHAPTER 1. INTRODUCTION 14

the development of object-centric programming languages. In these languages,
objects are created and modified directly, without the need to define classes.
This allows objects to evolve by direct modification, rather than having to com-
mit objects to being of a particular class. Class-centric programming languages
require classes to be defined before instances of those classes can be created.
This reflects a Platonic philosophy of objects and abstractions [Plato], in which
the abstractions (classes) must exist in order to understand their instances. The
object-centric philosophy is to create objects first, and then to create abstractions
based on the objects that exist, rather than to try to define the abstractions first.

Automatic structuring and restructuring of programs based on the objects
in a system is motivated by the evolutionary nature of software development.
It recognises one of the most fundamental philosophical driving forces behind
object-centric programming languages: the need to base abstractions on objects
rather than vice versa.

Section 2.4 gives an example of how programs deteriorate, and how restructur-
ing can improve them. It relies on some knowledge of object-oriented concepts,
and so is left until the end of the chapter which introduces these concepts (Chap-
ter 2).

The restructuring system developed and described in this thesis is called Guru,

because it assists in Self improvement.

1.1 Structure of the thesis

Object-oriented programming has become increasingly popular, but not every-
one agrees on the meaning of ‘object-oriented’ or on the associated terminol-
ogy. Chapter 2 introduces the concepts and terminology of object-oriented pro-
gramming used in this thesis. Object-centric programming is a new approach to

object-oriented programming. The differences from conventional (class-centric)

CHAPTER 1. INTRODUCTION 15

object-oriented programming are explained in Chapter 2, along with an intro-
duction to Self [Ungar87|, the object-centric programming language used for this
work.

Inheritance is introduced in Chapter 2 as one of the defining characteristics
of object-oriented programming. It allows programs to capture the shared char-
acteristics of objects, at different levels of abstraction. Designing inheritance
hierarchies is hard, precisely because it requires the identification of appropriate
abstractions. Texts on object-oriented design such as [Meyer88] provide guide-
lines, but it remains an art rather than a science. An alternative approach to
constructing a hierarchy by hand is to infer one from the features of the objects
that a program creates, or will need to create. Chapter 3 describes the extended
inheritance hierarchy inference algorithm, which infers an inheritance hierarchy
that satisfies well justified criteria, such as eliminating duplication of features, for
any set of objects.

Having created an inheritance hierarchy, many developers think of it as static;
they may add new classes, but are reluctant to restructure it. This is not sur-
prising, as restructuring inheritance hierarchies is difficult and error prone. Au-
tomatic restructuring requires no programmer effort and does not risk the intro-
duction of errors. Chapter 4 shows how the algorithm described in Chapter 3
has been used in the construction of an automatic restructuring tool called Guru.
Any group of Self objects can be restructured by Guru into an inheritance hier-
archy which meets the criteria defined in Chapter 3 (such as no duplication of
methods) while preserving the behaviour of programs.

Restructuring hierarchies in order to factor shared methods into traits objects
(classes) is only one form of factoring. Another is factoring common code into
methods, which allows systems to be more compact and improves consistency.
Manually designing and restructuring inheritance hierarchies and methods which

maximise factoring is inherently difficult. Chapter 5 describes how Guru has been

CHAPTER 1. INTRODUCTION 16

extended, from automatically restructuring an inheritance hierarchy to automat-
ically refactoring shared expressions from methods at the same time. Method
refactoring is integrated into the restructuring of inheritance hierarchies described
in Chapter 4, to enable the maximum amount of factoring of methods and ex-
pressions. In the resulting inheritance hierarchies, none of the methods and none
of the expressions that can be factored out are duplicated.

Chapter 6 describes experiments performed in order to assess the restructur-
ing, with and without refactoring of methods, performed by Guru. The results
indicate that the structure of inheritance hierarchies produced by Guru is exactly
that expected of well designed inheritance hierarchies. The amount of code is re-
duced, by removing redundancies, and the consistency and amount of code reuse
increased.

The restructurings, with and without refactoring of methods, described in
Chapters 4 and 5 are useful by themselves, as shown by the results described in
Chapter 6, but are not the only possible useful tools for restructuring or analysis
of a system. Chapter 7 describes other analysis and restructuring tools which are
useful either individually, or in conjunction with other restructurings.

Finally, conclusions derived from the work described in this thesis are pre-
sented in Chapter 8, along with a critique assessing the value of this research and
discussing areas of future work which could address some of the limitations, and

build on the achievements, of this research.

Chapter 2

Background

Object-oriented programming is increasing in popularity, but not everyone agrees
on the meaning of ‘object-oriented’ or on the associated terminology. Section 2.1
introduces the concepts and terminology of object-oriented programming used in
this thesis.

Object-centric programming is a new approach to object-oriented program-
ming and the differences from conventional object-oriented (class-centric) pro-
gramming are explained in Section 2.2.

Self [Ungar87], the object-centric programming language used for this work,
is introduced in Section 2.3.

Section 2.4 shows an example of how programs deteriorate, and how restruc-

turing can improve them.

2.1 Object-oriented programming

This section introduces the concepts and terminology of object-oriented program-
ming necessary to understand the work described in this thesis. More complete
introductions, including the principles behind object-oriented programming and
the reasons for its increasing popularity, can be found in [Budd91, Meyer88|.

This section introduces class-centric object-oriented programming, and the

17

CHAPTER 2. BACKGROUND 18

following section introduces object-centric object-oriented programming. Unless
otherwise stated, ‘object-oriented’” means ‘class-centric object-oriented’.
The following concepts and mechanisms are considered as defining object-

oriented programming:
e Objects.
e Inheritance and classes.

e Message sending polymorphism.

2.1.1 Objects

An object-oriented system is composed of objects, which have identity and en-
capsulate state and behaviour. ‘Identity’ means that an object has an identity
distinct from other objects, independent of its value (or state). For example, two
people can have the same name, but are distinct individuals with their own iden-
tities. Conversely, one person can be known by different names (using aliases),
but the person’s identity does not depend upon which name is used. ‘State’
means that an object has its own unique state, which can change and is unique
to it. For example, a person has an age which may be different to other people’s
ages. A person’s age changes on each birthday, which may be on a different day
to other people’s birthdays. Each object has a particular behaviour; for example,

the noise made by a dog is different to the noise made by a sheep.

2.1.2 Inheritance and classes

Objects are created as belonging to a ‘class’ and are each called an ‘instance’
of their class. Classes are used to define the behaviour shared by all of their
instances. Furthermore, behaviour can be shared between classes, using inheri-
tance. A class which inherits from another class defines its behaviour not only itself,

but also shares all of the behaviour defined by classes from which it inherits.

CHAPTER 2. BACKGROUND 19

Many statically typed object-oriented languages use inheritance to define sub-
typing relationships as well as for sharing implementation. The issues associated
with using the same inheritance hierarchy for both subtyping and sharing imple-

mentation are discussed in [Cook90].

2.1.3 Message sending polymorphism

Behaviour (and in some languages, state) is invoked (accessed) using message
sends. A message is sent to an object to make it do something. For example,
an object representing a set can be sent a message to add another object to the
set (such as ‘aSet add: anObject’). Message sending polymorphism means that
different objects can be sent the same message, but respond to it in different
ways. For example, the message to add an object to a set is the same as the
message to add an object to a list, but the response to the message is different
depending upon whether it is a set or a list receiving the message. A set responds
to the message by checking whether it already contains the object, in which case
the set will not add the object. A list responds to the message by adding the
object to the end of itself. The code executed in response to a message is typically
known as a method. The mechanism which determines which method to execute
in response to a message send is called method lookup, and is implemented using
dynamic binding. In a class-centric language, the method executed in response
to a message send is determined by the class of the object receiving the message,

this object being called the receiver of the message.

2.2 Object-centric programming

Object-centric programming is distinguished from class-centric programming by
the absence of classes. In object-centric programming, inheritance is between
objects and there are no classes. New objects are created by copying other objects,

rather than as instances of a class.

CHAPTER 2. BACKGROUND 20

Conceptually, object-centric programming is as powerful as class-centric
programming, in that everything that can be modelled using a class-centric
language can be modelled in an object-centric language, as discussed in
[Lieberman86, Stein87].

Object-centric languages differ in details such as restrictions concerning which
objects can inherit from other objects [Dony92]. The specific features of Self are

dealt with in the following section.

2.3 The Self language

Self [Ungar87] is an object-centric programming language, originally developed
at Stanford University and Xerox PARC (by David Ungar and Randall Smith),
and more recently at Sun Microsystems Laboratories. The version of Self used for
the work reported in this thesis was Sun Microsystems Laboratories Self, Version
4.0.

Self was chosen as the language to investigate object-oriented program re-
structuring because object manipulation in Self is powerful and easy to use.
Furthermore, it is a simple, consistent and powerful language.

Self is similar in many ways to Smalltalk [Goldberg90], but with some dif-
ferences which will need explaining in order for this thesis to be understood by
readers familiar only with Smalltalk or other object-oriented programming lan-
guages.

Self does not have static type declarations, which means that the inheritance hi-
erarchy is not used as a static typing hierarchy, i.e. to statically constrain the compatibility
of objects, but rather as a means of sharing behaviour and data.

Self objects contain methods, data and their inheritance links in slots. Slots
used for inheritance links are called parent slots. Data slots and parent slots can
be either read only, or read and write. The latter are also called assignable slots.

Assignable data slots are analogous to instance variables in Smalltalk. However,

CHAPTER 2. BACKGROUND 21

in Smalltalk, the names of an object’s instance variables are defined by its class.
Therefore, classes define the instance variable structure of their instances. All
instances of a class have the same number and names of instance variables, but
each object has its own specific instance variables, which are different to other
objects’ instance variables. Instance variable structure is inherited by classes, just
as methods are inherited, from their superclasses. In Self, the names of assignable
data slots (instance variables) are defined by prototype objects. When a new object
is created as a copy of a prototype object, it will have the same number and names
of data slots as the prototype object. Therefore, the Self equivalent of instance
variable structure is defined by prototype objects. As instance variable structure
is defined by copying a prototype object, it is not inherited.

The Self 4.0 programming environment allows the programmer to indicate
that an object should include slots, called copied-down slots, copied from another
object, called its copy-down parent. This is particularly useful for specifying that
an object copies (at least part of) its instance variable structure from a prototype
object. Slots subsequently added to a copy-down parent are also added to its
copy-down children. Similarly, modifications to copied-down method slots are
propagated to copy-down children. Copied-down slots are indicated by being
displayed in a different colour to other slots.

Figure 2.1 shows a Self object as represented in the Self 4.0 user interface.
Messages can be sent directly to an object using an evaluator. In this example,
the result of pressing the ‘evaluate’ button of the evaluator is the object resulting
from sending the message ageNextBirthday to objectA. (In this thesis, Self code
fragments are shown in sans serif font.) This causes the method slot ageNextBirth-
day to execute, which evaluates the expression ‘age + 1’. Messages without an
explicit receiver are sent to self (hence the name of the language). In this ex-
pression, age is a message, which, as it does not have an explicit receiver, is sent
to self, namely objectA. Sending age to self causes the (assignable) data slot age

to return the object it refers to, which is the object 2. Then, the message ‘+’ is

CHAPTER 2. BACKGROUND 22

sent to 2 with the argument 1. The object resulting from this message send is
3, which is returned by the method ageNextBirthday. Therefore, the object 3 is
returned as the result of sending the message ageNextBirthday to objectA.

Sending the message growOld to objectA causes method growOld to execute,
resulting in sending the message age: to self with the result of the expres-
sion ageNextBirthday as an argument. The message send age: ageNextBirthday
makes the assignable data slot age refer to the object resulting from sending
ageNextBirthday to self. Therefore, age will now refer to the object 3.

The arguments of a method are interspersed with the name of the method
using :’ to separate each argument. A method has as one ‘:’ for each argument.
For example, a method ‘aMethod:” with one argument ‘oneArgument’ is written
‘aMethod: oneArgument’. A method ‘aMethod:WithTwoArguments:” with two
arguments, ‘argumentOne’ and ‘argumentTwo’, is written ‘aMethod: argumentOne

WithTwoArguments: argument Two’.

4ohjectA
Fodule:

L £ #——this is an assignable data slot
ageMextBithday age + 1

growOld age: agelNexBuhasy B 5y e are method slots

ageMNextBirthday _\\

Esaluate \ Disroiss

pressing this button sends the message
‘ageNextBirthday’ to ‘objectA’

this is an evaluator

Figure 2.1: User interface representation of a Self object.

Data slot accesses and assignments are made using message sends which are

CHAPTER 2. BACKGROUND 23

indistinguishable from message sends that invoke methods. Therefore, methods
which send the message age can be written independently of whether age is a data
slot or a method slot. For example, an object might have a ‘dateOfBirth’ data
slot, and a method slot called ‘age’ which calculates the object’s age based on
its ‘dateOfBirth’ and the current date. Similarly, a message send which causes an
assignment to a data slot is indistinguishable from a message send which invokes
a method with one argument.

Any object which has assignable slots is mutable; that is, it has mutable state.
Examples of objects which are immutable are integers and floats.

A data slot can refer to any other Self object. Consider the object shown
in Figure 2.2. The data slot address refers to an object (objectB), which itself
has several data slots. Sending the message ‘address road’ to objectA causes the
message road to be sent to the result of sending the message address to objectA.
The object resulting from sending the message address to objectA is objectB.
Sending the message road to objectB returns the string object ‘‘Oxford Road".

Self is object-centric, that is, there are only objects, not classes and objects.
Objects inherited from are known as parents of the objects which inherit from
them. Objects inherit from their parent object(s) using parent slots. Figure 2.3
shows an example of an object which has a parent slot. A parent slot is indicated

¥ after its name. Inheritance is a mechanism for sharing slots amongst

by a
objects. Parents can be seen as the shared parts of their children [Chambers91].

If the message birthday is sent to objectA, then, as objectA does not itself define
a slot called ‘birthday’, the slot is looked for in its parent objects (it has only one
parent object, labelled ‘objectB’). As objectB defines a method slot birthday, this
method is executed. Executing the method birthday results in the message party
being sent to self (objectA), which consequently results in the method party being
executed. Executing method party results in methods eat, drink and beMerry

being executed, with self still referring to objectA. The details of these methods

will not be discussed. Then, the message growOld is sent to objectA, which as we

CHAPTER 2. BACKGROUND 24

4.objectA
odule: example
address objectS

address road

Esmluate Disciiss
—i%ohjectB
Bodule: examnple
city Menchester’ =
hilmber de’ =
print meswmber,* roed, Ywlezy B
road ‘Chiford Road ' =

Figure 2.2: A Self object with a data slot.

have seen results in age being increased by 1; hence in this example age will now
refer to the object 4.

An object does not have to inherit from any other object; it can be totally
self-contained, as in Figure 2.1. Consequently, there are multiple roots of the
inheritance hierarchy. Parent objects are the same as any other objects, and an
object can inherit from any other object. Self even allows cycles in the inheritance
hierarchy (called cyclical inheritance); an object can inherit from an object which
inherits from itself (in fact, an object can even inherit directly from itself).

Parent objects can also be referred to, without being inherited from, by using
non-parent (data) slots, as shown in Figure 2.4. This provides a convenient way
to refer to parent objects while developing a system. There is an object in the
standard system, called the ‘traits’ object, which exists for this very purpose. The
name ‘traits’ is used to mean the shared behaviour of objects, that is, their shared

parent object. For example, ‘traits set’ is used to refer to the parent object of all

CHAPTER 2. BACKGROUND

~ 4objectB
odule: example
biehderry =
birthday =
party,
growlld
drink. . B
eat =

party ec drind beldery B

4.objectA
Idndule: example
parent® objectD
age Rl

agere=tBithday age + [B
growold are: egeNextBinhday B

birthday

Evmaluate Diisrniss

Figure 2.3: Self object with a parent slot.

25

CHAPTER 2. BACKGROUND 26

‘set’ objects. In this respect, traits objects are analogous to classes in class-centric
languages. In the example shown in Figure 2.4, objectA inherits from objectB,
but objectC does not. Therefore, objectA will respond to the message ‘birthday’
as expected, but if sent to objectC, this message will cause an error.

Objects can have more than one parent slot. An object inherits from all of its
immediate parent objects equally, that is, there is no preference between parent
objects. If a message is sent to an object which it does not implement itself,
then an implementation is looked for in all its parent objects, and all their parent
objects etc. If only one implementation is found, even if it is found by multiple
paths, then this implementation is used in response to the message send. Finding
more than one implementation results in a run-time error called an ‘ambiguous
selector error’. Consider Figure 2.5'. Sending the messages ‘x’, ‘m’, ‘n’ and ‘p’
to object A result in methods ‘x’, ‘m’, ‘n’ and ‘p’ in objects A, C, D and E
respectively being invoked. If the messages ‘r’, ‘s’, ‘t’ or ‘y’ are sent to object A,
then ‘ambiguous selector errors’ are reported.

Assignable parent slots are used for modifying, or adding to, the behaviour
of an object dynamically. For example, a collection object could be implemented
using an assignable parent slot, which inherits from the appropriate parent object
depending on whether the collection is empty or not-empty. Figure 2.6 shows this
collection object and its two possible parent objects. This implementation allows
the methods in notEmpty to be written more simply than if they required tests for
isEmpty. The only complication is that remove: now requires a test for whether
the collection has become empty. This use of assignable parent slots is called

dynamic inheritance.

LA diagrammatic representation of Self objects has been used in preference to screen images
from Self 4.0 in order to make the figures as simple as possible. In all figures, features of the
same name are equivalent unless otherwise stated. Arrows represent inheritance, and are shown
in the direction from children to parents. Where necessary, the name of an object appears in
the top left of the object. Slots are shown inside the object in which they are defined. If the
details of the implementation of a slot are not important, only the name is shown.

CHAPTER 2. BACKGROUND 27

this is not a parent slot

4.objectC
Bodule: exarm
birthdaykethods: ebrecsS

birthday
"will not be wunderstood"

Ewaluate Flisrniss

“4.o0bjectB
Fodule: example
biekAerry

birthicday
drink,

eat
party ez draek beldeny

O O O O oo

4.objectA

Bdodule: example

parent” objects
age 33
agere=tBirthday age + 1 B
growiold cge: areMNexaB ithdey B

birthday
Evaluate Disriviss

Figure 2.4: A parent object referred to by both a parent and non-parent slot.

CHAPTER 2. BACKGROUND

Figure 2.5: An object defining multiple inheritance.

empty

iISEmpty = true

includes: x = false

add: x = (parent: notEmpty.
add: x)

remove: x = (error)

notEmpty

isEmpty = false
includes: x =(...)
add: x=(...)
remove: X = (...
(size = 0)
ifTrue: [parent: empty])

aCollection \
*:

parent
instanceVariables

Figure 2.6: An object defining an assignable parent slot.

28

CHAPTER 2. BACKGROUND 29

Another example of the use of assignable parent slots is for dynamically cre-
ating objects which are the same as another object, with added behaviour. An
object can be created which defines the added behaviour and inherits the original
behaviour using an assignable parent slot. Such objects are often called wrappers
or decorators, and the object inherited from using an assignable parent slot is
called a data parent. Consider a ‘pen’ object which can draw only black lines,
and a ‘colour wrapper’ which defines only a colour and an assignable parent slot.
The colour wrapper can become a ‘coloured pen’ by assigning the original pen
object to its assignable parent slot. The colour wrapper now behaves exactly the
same as the pen object, including sharing the same state, but has the additional
state of a colour and additional behaviour of drawing coloured lines. Figure 2.7

illustrates this example.

aPen

position <- 2@3

draw = (... black lines ...)

aColouredPen
parent* <-
colour <- red

draw = (... coloured lines ...)

‘<-" means that this is an assignable slot

Figure 2.7: Using an assignable parent slot to add behaviour to an object.

CHAPTER 2. BACKGROUND 30

2.3.1 Resends

If object A in Figure 2.5 is sent the message p, then the method p in object E
will be invoked. However, if the programmer wants method p in object E to reuse
method p in object D, this cannot be achieved using a normal message send. A
message send p in method p in object E sends the message p to self. If method
p in object E results from a message send p to object A, then self is object A.
Therefore, if method p in object E sends the message p to self it will invoke itself
recursively. Resends allow a method to invoke another method which has been
overridden. A very similar mechanism is provided in other object-oriented pro-
gramming languages; for example, ‘super’ in Smalltalk. The expression ‘resend.p’
inside method p in object E invokes method p in object D. The method invoked
by a resend can be statically determined (if parent slots are not assignable) by
looking for an implementor of the resent message (in this example p) in the im-
mediate parents of the object where the method containing the resend is defined.
Unlike message sends, resends can be statically bound; the search for the method
to execute in response to a resend can be done before the method containing the
resend is executed, and does not rely on the value of self. The receiver of resends
is always self.

Resends can be either directed or undirected. An undirected resend, specified
using ‘resend.’” as in the example above, means that the lookup for the method to
be invoked considers equally all parents of the object where the method containing
the resend is defined. If more than one implementation is found then this causes
a run-time error. For example, consider the objects shown in Figure 2.8. The
expression ‘resend.m’ inside method m in object A would result in a run-time
error. A directed resend is specified using the name of a parent slot followed by
‘.. The parent slot name specifies in which parent to look for the implementation
of the method to be invoked. For example, the expression ‘pl.m’ is a directed

resend, and inside method m in object A would invoke method m in object B.

CHAPTER 2. BACKGROUND 31

Figure 2.8: Objects including methods containing resends.

One use of directed resends is to resolve ambiguities which would cause ‘am-
biguous selector errors’. For example, in order to specify which method ‘n’ to
execute in response to a message n sent to object A, a method n can be defined

in object A as either ‘n = (pl.n)’ or ‘n = (p2.n)’ as required.

2.3.2 Modules

Self 4.0 provides modules for grouping together related slots and objects for ‘filing-
out’ as text files, so that they can be ‘filed-in’ to other Self images. This provides
a flexible mechanism for transporting application source code between Self im-
ages [Ungar95].

Those slots which belong to a module are called ‘well-known’ slots. Other
slots which exist in the system are either copies of ‘well-known’ slots, or have not

been put in any module.

2.3.3 The Self 4.0 User Interface

Self 4.0 provides a sophisticated user interface [Smith95] for interacting with
objects in a Self image. The user interface supports direct representation and
manipulation of objects, allowing the user to add, remove and modify slots of
objects, and to send messages directly to objects using evaluators. Figures 2.1,
2.2, 2.3 and 2.4 show how objects are represented in the Self 4.0 user interface.

The user interface is built using morphs, which are graphical components

CHAPTER 2. BACKGROUND 32

which can be assembled together to build complex structures. The user interface

supports the direct graphical assembly of morphs.

2.3.4 Mirrors and reflection

Self is a reflective language; that is, programs can be written in Self which analyse
and modify objects and methods in the Self image.

In application programs, reflection is discouraged, and separated from normal
objects into meta-objects called mirrors. The philosophy is that, in application
programs, objects should be ‘talked to rather than talked about’ [Self4.0]. What
is most important about an object is how it responds to messages, rather than
anything to do with how it is implemented, including its structure (assignable data
slots) or its inheritance relationships. In a classless system it is not important to
know an object’s parent(s).

The behaviour of a program that uses reflection depends upon things other
than how an object responds to messages, such as which slots an object defines
rather than inherits. Therefore, the behaviour of such programs can change
if objects are modified, even if the behaviour of those objects (in response to
messages) remains unchanged.

A mirror on an object is itself an object, which can be sent messages in
order to analyse and modify the object it reflects, called its reflectee. A mirror
is a collection of its reflectee’s slots; each slot is itself a Self object, which can
be examined and manipulated. Slots can be added to objects, removed from
objects, and modified dynamically. The different types of Self slots: parent, data
and method slots, are represented by different sorts of slot object.

Consider an object which represents a collection. It will respond to the mes-
sage size by returning the number of elements it contains. If the message size
is sent to a mirror on this collection object, then the mirror responds with the
number of slots in the collection object (which in general will be different to the

previous number). To add an object to the collection, the collection object is

CHAPTER 2. BACKGROUND 33

sent the appropriate message, for example aCollection add: anObject. To add
a slot to the object representing the collection, the collection object’s mirror is
sent the appropriate message, for example aCollectionMirror addSlotFromString:
'newMethodSlot = (some method text)'2.

An example of an analysis available using mirrors includes being able to check
whether the reflectee of a mirror understands a particular message. For exam-
ple -Mirror understands: 'aMessage’®. (‘_Mirror’ creates a mirror object of the
receiver.) Note that this does not result in aMessage being sent to the reflectee
object, therefore the method (or error message) which would be invoked if aMes-

sage were sent to the reflectee object is not invoked.

2.3.5 Blocks

Self supports anonymous deferred functions called blocks, similar to blocks in
Smalltalk. All control structures in Self are implemented using blocks. A block is
denoted by code enclosed in square brackets (‘|" and ‘). For example, [1 + 2]
is a block. A block can be passed as a parameter to methods, and sent mes-
sages, in the same way as any other object. Blocks understand the message
value, which causes the code they contain to be executed. For example, the re-
sult of evaluating [1 + 2] value is 3. Blocks can take arguments, for example
the block [| :a | a + 3] takes one argument. Blocks understand messages taking
corresponding arguments, such as value:. For example, the result of evaluating
[|:a]a+ 3] value: 2is 5. A block can be evaluated as often as required; there-
fore blocks are used as parameters to iteration methods, such as do: defined for
collections, which evaluates a block, passing it each element in turn. Blocks can

bl

contain non-local returns, signified by a ‘1, which cause their enclosing method
to return at that point. For example, the statement condition ifTrue: [1 answer |

inside a method will cause the method to return answer if condition is true, but

2 Actually, the addSlotFromString: message is not part of the standard Self image, but is
straightforward to define.
3In fact, understands: is not a standard Self method, but is simple to define.

CHAPTER 2. BACKGROUND 34

otherwise the rest of the method will execute. Unlike Smalltalk, in Self blocks
can only be evaluated before the method they appear in has returned. Blocks
which violate this are called non-lifo blocks, and their evaluation is not supported
in Self 4.0. Such blocks can be created simply by returning a block as the result

of a method.

2.3.6 Delegation

Self uses delegation to implement inheritance. If a message is sent to an object
A, and delegated to an object B, the method lookup starts in object B, but
self is bound to object A. For example, consider object A delegating a message
to object B, using the following message ‘'aMessage’ sendTo: self delegatingTo: B’
sent to object A. If B responds to the message aMessage by executing the method
aMessage = (size + 1), then the result of the delegated message send will be the
result of adding 1 to the result of sending the message size to A. Note that
the method executed does not have to be inherited by A, and A does not have
to understand the message aMessage. There does not need to be any specific
relationship between the objects A and B. An object X inheriting from object
Y (using a parent slot) is effectively the same as delegating all messages not
understood by object X to object Y.

It is important to understand the difference between delegating a message to
another object, and sending a message to another object. In the example above,
if the message aMessage is sent to object B by object A then the result is that of
adding 1 to the result of sending the message size to B, not to A.

The meaning of delegation in Self should not be confused with the meaning
often misunderstood by C++ programmers. Many C+-+ programmers use the
terminology that, if the message aMessage is sent to object A and delegated to
object B, this means that A merely sends B the message aMessage. Correctly,
this is called forwarding a message. The correct definition of delegation in C++

is similar to forwarding, but with the additional feature that a reference to the

CHAPTER 2. BACKGROUND 35

object originally sent the message is passed to the object that the message is dele-
gated to [Johnson91|. Therefore, if the message aMessage: is to be sent to object
A and delegated to object B, then B could be sent the message! ‘B m: self’
(self refers to object A), where the method aMessage: is defined for B as
aMessage: delegator = (delegator size + 1). Messages which would nor-

mally be sent to self are now sent to the argument delegator instead.

2.3.7 Other technicalities

In Self, any string can be evaluated as if it were the source code of a method.
A simplified version of this is that strings can be used to define messages to
send to objects; for example 'aMessage’ sendTo: anObject. (The equivalent in
Smalltalk is anObject perform: #aMessage). The string used can be the result
of a method, and this is commonly called a computed selector. In the case of
computed selectors, it may not be possible to statically determine the message
that will be sent (just as it is not possible to statically determine the result of an
arbitrary piece of code).

Each object representing a method slot contains a bytecode vector, which is a
parsed version of the method’s source. Guru uses parse trees created from these
bytecode vectors rather than from a method’s source code. Parse trees, rather
than bytecode vectors, are used by Guru as they are simpler to use for method
comparison (see Section 4.4.1) and for splitting statements into expressions (see
Sections 5.2 and 5.3).

Message sends to local variables and arguments of methods appear the same
as any other message sends. However, the scoping rules for Self mean that such
message sends are easily identified. The scoping rule is that message lookup is
from the ‘most local’ to the ‘least local’. For example, consider the following

method:

4In Self style syntax.

CHAPTER 2. BACKGROUND 36

m=(]t]

ta.

[[t]ta] value.
self t a)

(Ignore the fact that t is uninitialised; it is not important for this example).

e In the first statement, ‘t a’, a is sent to the local variable t of the method

m.

e In the second statement, ‘[| t | t a] value’, a is sent to the local variable t

of the block, not the local variable of the method.

e In the third statement, ‘self t a’, a is sent to the result of sending t to self.
Note that in this case t does not refer to the local variable of the method,

but to some message understood (or otherwise) by self.

Self has primitive methods, which are invoked using a message send. All
primitive method names start with ‘.’ followed by an uppercase letter. Primitive
methods invoke code in the Self virtual machine. The most commonly used
primitive methods in application code are ‘_Clone’ and in reflective code ‘-Mirror’.
‘_Clone’ creates a copy of the receiver in which slots of the copied object refer
to the same objects as the slots of the same name in the receiver. (In Smalltalk
terminology, ‘-Clone’ creates shallow copies.) ‘_Mirror’ creates a mirror object of
the receiver, as mentioned in Section 2.3.4.

The Self equivalent of arrays, called vectors, are special objects for which the
primitives -At: and _At:Put: are defined. These primitives are used (usually indi-
rectly) to access and assign to indezed slots, similar to indezed instance variables
in Smalltalk. That is, vectors have assignable data slots indexed using integers.
The mirror objects (mirrors vectors) associated with vectors are different to those
associated with other objects. There are some other objects which also have spe-
cific sorts of mirrors, including: byteVectors, canonicalStrings, smalllntegers, floats,

and mirrors.

CHAPTER 2. BACKGROUND 37

2.4 Example of program deterioration and re-
structuring

The following example demonstrates how program structure can deteriorate, and

how restructuring can be necessary. Consider the objects in Figure 2.9.

1 x
b
c

Oo<

Above is object 1,
which defines features
X, b and c.

Figure 2.9: Example objects.

The ‘natural’” inheritance hierarchy for these objects is shown in Figure 2.10.
The arrows represent inheritance, and are shown in the direction from children
to parent objects. In this example, object 1 defines feature x itself, and inherits

features b and c from object 4.

Figure 2.10: Example objects hierarchy.

If a new object is to be added, defining features z b c’, where feature ¢’ has
the same name as the feature c in the other two objects, but has a different
implementation, then the most ‘natural’ way to extend the inheritance hierarchy
is shown in Figure 2.11. (Note that feature ¢’ in the new object (called ‘object 3’)

overrides the version of feature c in object 4). This may or may not be the ‘best’

CHAPTER 2. BACKGROUND 38

hierarchy for these objects, but is the way that most programmers would extend
the hierarchy of Figure 2.10 to add the new object. When a programmer has to
extend an existing hierarchy, he or she may be tempted to choose the easiest way,

which may be different to the ‘best’ way.

X y

Figure 2.11: Example objects hierarchy.

Now, if feature d is to be added to objects 1 and 2 but not to object 3,
the hierarchy will deteriorate unless it is restructured. Consider the options for

adding feature d to objects 1 and 2 without restructuring the existing hierarchy:

e Feature d can be duplicated in objects 1 and 2, resulting in the hierarchy
shown in Figure 2.12. This is not a good solution as changes to feature d will
have to be made in both objects 1 and 2 or they will become inconsistent.

Also, this duplication will use more space than necessary.

e Feature d can be defined in object 4, but overridden in object 3 with a
special feature which cancels the inheritance of this feature, as shown in
Figure 2.13. The special cancellation feature states that this feature should
not exist for object 3. In this solution, there is no duplication of feature d,

but the cancellation of inheritance is seen as a design fault.

e Feature d can be defined in a new object, which is inherited by objects
1 and 2 using multiple inheritance, as shown in Figure 2.14. There is no
duplication of feature d, but the features shared between objects 1 and 2

are now split between two objects, which is not a good design.

CHAPTER 2. BACKGROUND

4 p
1 5 2y 3
d d z

Figure 2.12: Duplicating feature d.

4 b
Cc
d
1 X 2 y 3 c’
z
d

d’ is a special feature which
means that object 3 does not
inherit or define the real feature d

Figure 2.13: Cancellation of inheritance.

Figure 2.14: Inappropriate multiple inheritance.

39

CHAPTER 2. BACKGROUND 40

The best solution for adding feature d to objects 1 and 2 is to restructure
the hierarchy, resulting in the hierarchy shown in Figure 2.15. In this hierarchy,
feature d is not duplicated, and the hierarchy shows the relationships between the
features and the objects in a clear and simple way. It is now clear that objects 1

and 2 share features ¢ and d, and objects 1, 2 and 3 share feature b.

Figure 2.15: Restructured hierarchy.

The aim of Guru is to restructure hierarchies from any badly designed hierar-
chy or collection of objects into a well designed hierarchy. Any of the hierarchies of

Figures 2.12, 2.13 or 2.14 will be restructured into the hierarchy of Figure 2.15.

Chapter 3

Automatic Inheritance Hierarchy

Design

Inheritance is one of the defining characteristics of object-oriented programming.
It allows programs to capture the shared characteristics of objects, at different
levels of abstraction. Designing inheritance hierarchies is difficult, as it requires
identifying suitable abstractions and the relationships between them. Texts pro-
vide guidelines [Meyer88], but design of inheritance hierarchies remains an art
rather than a science. Rather than designing an inheritance hierarchy by hand,
an alternative approach is to infer one from the objects that a program creates,
or will need to create. This chapter will describe a small collection of algorithms
for inferring inheritance hierarchies for any set of objects.

The algorithms are described in two parts; firstly, the inheritance hierarchy
inference (IHI) algorithm [Moore96a]| is presented, which infers hierarchies which
satisfy well justified criteria, but do not contain any overriding of slots. Then,
algorithms for introducing overriding into the hierarchies produced by the THI
algorithm are presented.

The IHI algorithm was discovered independently of other algorithms, such as
those described in [Cook92, Mineau90, Mineau95], which produce similar results.

The differences between the IHI algorithm and those described elsewhere are

41

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 42

discussed in Section 3.8.

An example of the different levels of abstraction shared by inheritance is that
the object 3 is not only an integer but also a number. Hence it shares abstract
behaviour with other numbers, as well as more specific behaviour with other in-
tegers. The structure of the inheritance hierarchy reflects the abstractions shared
between objects. In Self, behaviour (method slots) and data (data slots) can be
shared by inheritance, as described in Section 2.3. Instance variable structure is
not shared by inheritance in Self, but rather by copying. In this chapter, those
aspects of objects that can be shared by inheritance will be called features. Us-
ing inheritance to share features increases code reuse, improves consistency and
makes maintenance of a system easier.

The algorithms presented are applicable to the design of inheritance hierar-
chies in any object-oriented programing language, but are described in the ter-
minology of Self (see Section 2.3). Other work [Bergstein91, Casais90, Cook92,
Godin93, Hoeck93, Lieberherr91, Mineau95, Pun89] uses the term ‘class hierar-
chy’, but as Self is classless, the term ‘inheritance hierarchy’ is used in this thesis.

Section 3.7 discusses the use of the algorithms for other languages and other
possible applications. Chapter 4 describes how these algorithms can be used for

automatic restructuring of inheritance hierarchies.

3.1 Introduction

An example of the action of the IHI algorithm is shown below: from the objects
of Figure 3.1 it will infer the hierarchy of Figure 3.2. The arrows represent
inheritance of features and are shown in the direction from children to their
parents. In the inferred hierarchy (Figure 3.2), object A defines feature f3 for
itself, inherits feature f2 from its immediate parent and inherits feature f1 from
its parent’s parent.

In general, the algorithm may construct hierarchies with multiple inheritance,

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 43

Object ‘A’ has
features ‘f1’, ‘2, '3’

A B e
f1 4 f1
f2 f f2 “ 5

Figure 3.1: A collection of objects with their features

Figure 3.2: The inferred inheritance hierarchy

in which case the diagram will be a graph rather than a tree.

The objects for which a hierarchy is to be inferred (A,B, and C in Figure 3.1)
will be called the original objects. The objects in the inferred inheritance hierarchy
which define or inherit the same features as the original objects (A,B, and C
in Figure 3.2) will be called the replacement objects. Objects in the inferred
hierarchy which are not replacement objects will be called traits objects. Where
it is unnecessary to make a distinction, replacement objects and traits objects

are collectively called (simply) objects.

3.2 Criteria for an inferred inheritance hierar-
chy

A system is defined by its objects and their features; the inferred hierarchy must

preserve the features of the original objects, so each original object must have

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 44

a corresponding replacement object which inherits or defines exactly the set of
features that the original defines. The structure of traits objects above the re-
placement objects and their inheritance links, being new, can take any form, so
many hierarchies will satisfy this correctness condition, including the one in which
the replacement objects are the same as the original objects, and there are no
traits objects. Further criteria must be met if the hierarchy is to be representative
of the structure inherent in the objects.

The first of these is that there should be as much sharing of features as pos-
sible. That is, every feature should be introduced in exactly one object in the
hierarchy. It must appear at least once if it appears in any of the original ob-
jects to meet the correctness condition. The motivation for this criterion is the
same as the motivation for having inheritance in the language in the first place:
sharing makes a system more compact and easier to maintain. The maximum
sharing of features is used elsewhere [Pun89] as the sole criterion for constructing
a hierarchy. It is desirable to keep the hierarchy as simple as possible, so that its
structure can be more readily understood.

The second criterion is that the fewest possible traits objects should be used
in the hierarchy. Since for correctness every feature must appear in some object
and no feature can appear in a traits object that will be inherited from by an
object that does not contain it, this means that objects will contain more than
one feature if and only if that combination of features is always found together
in the objects which inherit from it.

The third and fourth criteria characterise the inheritance links. The third
is that all inheritance that is consistent with the objects should be present in
the hierarchy. Thus if all the objects which inherit from some object C also
inherit from object D, then C should itself inherit (directly or indirectly) from
object D. Therefore, the hierarchy of Figure 3.3 satisfies the third criterion, but
the hierarchy of Figure 3.4 does not.

The motivation is that if the objects containing the features of object C (f3 in

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 45

Figure 3.3: Hierarchy with all inheritance consistent with the objects

Figure 3.4: Hierarchy which does not satisfy the third criterion

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 46

the example) should not inherit from D (those containing f1), the set of original
objects should include at least one where f3 does not occur with f1, just as there
are objects where f1 occurs without f3.

The fourth criterion applies the general requirement for simplicity to the links;
links which are implied by the transitivity of inheritance should not be made
explicit. This is equivalent to requiring the minimum number of inheritance links
necessary to satisfy the other criteria. To make the implied links explicit only
makes the hierarchy more complex than necessary and sends the readers of the
code to look immediately at objects that they will eventually encounter anyway.

The first four criteria together define the (maximally compact) (Galois) knowl-
edge space [Godin93, Mineau90, Mineau95|, also called the Galois SubHierar-
chy [Dicky96].

The fifth criterion is that replacement objects should be leaves of the fi-
nal inheritance hierarchy. In class based languages, this corresponds to inher-
itance being only from abstract classes, a criterion for hierarchy design suggested
in [Johnson88]. In many cases it is easy to modify hierarchies inferred with this
criterion into ones in which this criterion is relaxed, and vice versa. However,
there are some cases in which the effect of this criterion makes such conversions
more complex. For example, consider the objects (identified with a number, con-
taining features identified by letters) defined in Figure 3.5, taken from an example

in [Casais94].

o 0T

s

Figure 3.5: Example objects to explain effect of the fifth criteria.

The graph satisfying all of the criteria, including the fifth criterion, is
shown in Figure 3.6. The graph satisfying only the first four criteria is shown in

Figure 3.7. Note that the fifth criterion results in one more inheritance link than

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 47

otherwise, as object 3 cannot inherit from objects 1 and 2.

ERE
< 7
N
o

C

Figure 3.6: Example solution including the fifth criterion.

The five criteria together are sufficient to uniquely define the hierarchy inferred
from any set of objects (see Appendix A.1 for a brief justification). Different
criteria produce different results; for example, fewer objects would be required if
features could be duplicated.

In order to satisfy the first criterion, there must exist a definition of equal-
ity of features. A subtle consequence of the features being essentially atomic is
that overriding will not exist in inferred hierarchies. The original objects cannot
define features which override each other, as all the features are defined by the
objects directly and not inherited. The IHI algorithm ensures that each replace-
ment object only inherits the features defined by the original object it replaces.
Overriding could only exist if replacement objects could have more features in
their inheritance paths than they actually inherit (that is, they could appear to

inherit more features than they really do). In this case, some of those features

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 48

Figure 3.7: Example solution without the fifth criterion.

would have to be overridden, so that they were not actually inherited by the re-
placement object. As replacement objects can only inherit exactly those features

that they require, none of them can be overridden.

3.3 The inheritance hierarchy inference algori-

thm

The simplest way to describe the algorithm is through an example. It will be
presented using graphs with three types of vertex, called FeatureVertices, Ob-
jectVertices and TraitsVertices, and two types of edge, InheritanceEdges and
FeatureEdges. ObjectVertices represent the objects for which an inheritance hier-
archy is to be inferred. FeatureVertices represent features and FeatureEdges show
the ObjectVertices or TraitsVertices in which a feature is defined. TraitsVertices

represent the inferred traits objects, and InheritanceEdges represent the inferred

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 49

inheritance links. Graphs are used to explain the algorithm because they pro-
vide an implementation independent representation which is easy to understand.
Also, although there is not a direct correspondence with the graph representa-
tions used in previous work [Dicky96, Godin93, Hoeck93, Lieberherr91, Mineau90,
Mineau95] there are similarities which make comparison easier (see Section 3.8).

Consider the objects in Figure 3.8, shown with their features inside them.

ol 02 o3 o4 05
ml, m2, m5 ml, m2, m6 ml, m3, m4 ml, m3, m4 m4, m8
m7, m9 m7, m8, m10

Figure 3.8: Example problem objects

The first step of the algorithm creates a bipartite graph [Schmidt93] with a
unique FeatureVertex for each feature, and FeatureEdges from each FeatureVertex
to the objects that they appear in. For the example, this would produce the graph
shown in Figure 3.9. If each FeatureVertex were used to define a traits object
and each FeatureEdge were used to define an inheritance link (in the opposite
direction), then replacement objects would inherit all the necessary features and
this graph would satisfy the criterion that no feature is duplicated. However, sets
of features which are shared by the same sets of objects (such as m3 and m7) are
not grouped together, so there may be more traits objects than necessary and
the second criterion is not satisfied.

To minimise the number of traits objects in the hierarchy, TraitsVertices are
introduced. The next step of the algorithm creates a TraitsVertex for each set
of ObjectVertices connected to a FeatureVertex in the initial graph, and labels it
with that set. (If more than one FeatureVertex has the same set of objects, this is
done only once. For example, ‘03, 04’ is a TraitsVertex for both the features m3
and m7.) The FeatureEdges from the FeatureVertices to their objects are then
replaced by a single FeatureEdge to the TraitsVertex with those objects as its

label. The effect on the example is shown in Figure 3.10.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN

ObjectVertex D FeatureVertex

——— FeatureEdge

Figure 3.9: Initial grouping graph

D TraitsVertex |:| FeatureVertex

| Objectvertex ~— FeatureEdge

Figure 3.10: Mapping graph with FeatureEdges and FeatureVertices

20

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN o1

This graph now represents all the objects that will appear in the inferred hier-
archy and the features that they will have. It is called the mapping graph. By con-
struction, the TraitsVertices and ObjectVertices partition the features amongst
themselves (each FeatureVertex has exactly one FeatureEdge) so there will be no
duplication of features in any resulting hierarchy. The label of every TraitsVertex
identifies exactly the set of objects containing the features given by the Fea-
tureEdges and no two TraitsVertices have the same label, so the number of traits
objects is as small as possible. The mapping graph is useful in its own right
because it shows what inherent classifications exist, and which objects belong to
those classifications.

However, the InheritanceEdges remain to be constructed. This will be done
in two steps. First, enough InheritanceEdges will be added to make sure that
objects will inherit the features necessary without inheriting inappropriate fea-
tures. Then, InheritanceEdges which are not needed, due to transitivity, will be
removed. To simplify the following figures, FeatureEdges and FeatureVertices will
be shown as just the FeatureVertex labels inside the appropriate TraitsVertex or

ObjectVertex, as in Figure 3.11, which represents the same mapping graph as

Figure 3.10.
0l, 02, 03, 04 03, 04, 05
ml m4
0l, 02 03, 04 04, 05
m2 m3, m7 m8
ol i 02 & 03 1 i o4 1 o5
m5 m6 m9 m10

Figure 3.11: The mapping graph as labelled objects

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 92

The InheritanceEdges which may be needed in the hierarchy are those con-
necting each ObjectVertex or TraitsVertex (let its label be the set os) to every
other TraitsVertex with a superset of os as its label. (Considering the labels alone,
the resulting graph is a subgraph of the subset inclusion lattice [Schmidt93].) For
example, an InheritanceEdge should be added from ‘ol, 02’ to ‘ol, 02, 03, 04’
because ‘0l, 02, 03, 04’ is a proper superset of ‘0l, 02’. The edges from Ob-
jectVertices to TraitsVertices are enough to ensure that each object inherits the
features it needs (as Figure 3.12 shows) but gives only a two level inheritance
hierarchy. The complete set of edges gives the hierarchy shown in Figure 3.13,
and satisfies the third criterion by construction, but clearly does not satisfy the

fourth criterion.

0l, 02,03, 04

Figure 3.12: Inheritance graph with replacement object-traits object links only

In order to remove InheritanceEdges which are unnecessary due to transitivity;
for each TraitsVertex PV and all TraitsVertices CV with an InheritanceEdge
(that exists before any edges are removed) to PV, remove all InheritanceEdges
to PV from all vertices (both TraitsVertices and ObjectVertices) which have an
InheritanceEdge to CV. For example, the InheritanceEdge from (03) to (03, o4,
05) is removed because (03) has an InheritanceEdge to (03, 04), which has an
InheritanceEdge to (03, o4, 05). The resulting graph will now represent the

inferred inheritance hierarchy as objects and their immediate parents, as shown

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 93

o0l, 02,03, 04 03, 04, 05

Figure 3.13: Inheritance graph with all edges from third step

ol, 02 03, 04 03 04 05
lnl

in Figure 3.14.

03, 04 04 05
m3, m7
03 iolod Lofos
m9 | © ml10

Figure 3.14: Inferred inheritance hierarchy

The time complexity of this algorithm is O(0?), where o is the number of ob-

jects, or somewhat better: a further discussion of complexity is in Appendix A.3.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN o4

3.4 An implementation of the inheritance hier-
archy inference algorithm

An implementation of the IHI algorithm is described by showing how it would
work on the example used in Section 3.3.

Consider the following objects (the same as those shown in Figure 3.8):

ol 02 03 o4 o5
ml, m2, m5 ml, m2, m6 ml, m3, m4 ml, m3, m4 m4, m8
m7, m9 m7, m8, m10

Figure 3.15: Example problem objects

A dictionary is created where the keys are the objects and the values are
their features. A dictionary is a collection of key value pairs (‘key — value’).

In the dictionaries used to implement the algorithm, the values are themselves

collections.
objects -> features
ol -> ml, m2, m5
02 -> ml, m2, m6
03 -> ml1, m3, m4, m7, m9
o4 -> ml, m3, m4, m7, m8, m10
05 -> m4, m8

Assuming that objects are different to features, add each key to each value
(collection). This is an untidy but efficient way to make sure that the original
objects have an equivalent replacement object in the solution, even if that solution
object has no unique features and defines only inheritance (as object 5 in this

example). The dictionary created is:

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 95

objects -> features

ol -> ml, m2, m5, ol

02 > ml, m2, mg, o2

o3 -> m1, m3, m4, m7, m9, 03

o4 -> m1, m3, m4, m7, m8, m10, o4
05 -> m4, m8, 05

This dictionary is ‘swapped around’, so that the elements in the value collec-
tions are now the keys.
For example, for the key value pair ‘ol — m1, m2, m5, o1’ the following key

value pairs are added in the resulting dictionary:

features -> objects

ml -> ol
m2 -> ol
ol -=> ol
m5 -> ol

such that if there is already a value for the key, e.g. if adding ‘m1 — o1’ when
‘ml — 02’ already exists, the value is added to a collection, that is, the key value
pair in the resulting dictionary would become ‘ml — ol, 02’.

The resulting dictionary has features as keys, and the objects they appear
in as values. This dictionary is the equivalent of the ‘initial grouping graph’ in

Figure 3.9.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN

This dictionary is then

features -> objects
ml -> 01,02, 03,04
m2 -> 01,02

ol -> ol

02 > 02

m5 -> ol

m6 -> 02

m3 > 03,04
m4 -=> 03,04,05
m7 -> 03,04

03 -> 03

m8 -> 04,05

o4 > o4

05 -> 05

m9 -> 03

m10 > o4

o6

‘swapped around’ again, but in a different way. The

‘swap around’ is done for the values as a whole, rather than for each element in

the collections which are the values. For example, the key value pair, ‘m3 — 03,

04’ adds ‘03, 04 — m3’ to the result (taking into account whether ‘03, 04’ already

exists). For example, if the key value pair ‘03, 04 — m7’ is already in the result,

it becomes ‘03, 04 — m3, m7’. In the resulting dictionary, all combinations of

objects which share a feature or features are the keys, and the values are all the

features they share.

collection of objects -> features
ol -> ol, m5
02 -> 02, m6
ol, o2 > m2

03, 04, 05 > m4

01, 02, 03, 04 > ml

03, 04 -> m3, m7
o3 -> m9, o3
o4, 05 > m8

o4 -> m10, o4
05 -> 05

This dictionary now represents all the new traits objects that will be needed

and all the features that they will have. It is called the mapping dictionary, and is

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN o7

the equivalent of the ‘mapping graph’ in Section 3.3. Each ‘collection of objects’
entry in the dictionary represents a new inferred object. Each ‘collection of
objects’ entry with only one original object will be the corresponding replacement
object in the restructured hierarchy. By construction, there will be exactly one
such entry per original object.

The new traits objects that will be needed have been discovered, and the next
stage is to work out the inheritance hierarchy.

A dictionary is made with each collection as its key and those collections which
are proper subsets as its value, for those collections which have proper subsets.
This represents the inheritance links from parents to children in the inferred
hierarchy (rather than the conventional representation of inheritance links used
in Section 3.3, from children to parents). This results in the following dictionary,

called the offspring dictionary:

collection of objects -> collections of objects
which are subsets

o4, 05 -> (05), (04)

03, 04, 05 -> (03, 04), (04, 05), (05), (04), (03)

01, 02 -> (01), (02)

01, 02, 03, 04 -> (03, 04), (01, 02), (01), (04), (02), (03)
03, 04 -=> (04), (03)

This now represents the new traits objects and all their offspring, that is, not
only their children but their children’s children etc. It is the equivalent of the
‘Inheritance graph with all (inheritance) edges’ (Figure 3.13) in Section 3.3 (with
the direction of inheritance represented in reverse).

In order to remove unnecessary inheritance (due to transitivity), a copy of
the offspring dictionary is created in which, for each traits object, the children
of those children which also have children are not included. For example, the
traits object labelled (03, 04, 05) has children (03, 04), (04, 05), (05), (04) and
(03). Of those children, (03, 04) and (04, 05) also have children, so their children,
labelled (05), (04) and (03) are not included in the collection of children of (03,

04, 05) in the new dictionary. This is effectively the same as the description in

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN o8

section 3.3, but may appear superficially different due to the representation of
inheritance from parents to children used in the implementation. Note that only
the children of objects in the collection of objects need to be considered when
looking for subsets of the labels of parent object labels, rather than looking for
the all possible subsets of an object’s label. Furthermore, objects whose label
is one element do not need to be considered as they cannot have children (their
label cannot have any non-empty proper subsets). Therefore, in the example
above, for object (03, 04, 05) only the children (03, 04) and (04, 05) need to be
considered for the possibility that they themselves have children. This is more
efficient than if all subsets of a label have to be considered; for example if we had
to check whether there was an object with the label (03, 05) in addition to the
objects with labels (03, 04) and (04, 05). Calculating all subsets of a collection
has exponential performance.

The resulting dictionary (called the inheritance dictionary) is:

collection of objects -> collections of objects
which are immediate children

04, 05 -> (05), (04)
03, 04, a5 -> (03, 04), (04, 05)
01, 02 > (0l), (02)
01, 02, 03, 04 -> (03, 04), (01, 02)
03,04 -> (04), (03)

This now represents the new inheritance hierarchy, as objects and their im-
mediate children. This is the equivalent of Figure 3.14 in Section 3.3 (with in-
heritance represented in the reverse direction).

Some objects in the mapping dictionary may not appear in the inheritance
dictionary produced, as not all objects will have children. Remember that all of
the new objects and their non inherited features will be given by the mapping
dictionary. The only additional information of the inheritance dictionary is the
parentage of new objects. The result can be converted into a dictionary with
inheritance from children to immediate parents, by swapping around the dictio-

nary, such that the items in the collection values become the keys, and their keys

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 29

become the values. This is the equivalent of Figure 3.14 in Section 3.3.

This produces the following dictionary:

collection of objects -> collections of objects
representing children representing immediate parents
o4, 05 -> (03, 04, 05)

ol -> (01, 02)

02 -> (01, 02)

04 -> (04, 05), (03, 04)

05 -> (04, 05)

03,04 -> (03, 04, 05), (01, 02, 03, 04)
01, 02 -=> (01,02, 03, 04)

03 -> (03, 04)

This (or the inheritance dictionary) and the mapping dictionary now define

the inferred hierarchy.

3.5 Reintroducing overriding into inferred hier-
archies

The THI algorithm does not consider overriding, and this can in some circum-
stances lead it to infer unnatural inheritance hierarchies. While too much over-
riding may be an indication of poor design, appropriate use of overriding can
improve the design of inheritance hierarchies. Overriding can capture the infor-
mal idea that something almost falls into a particular ‘class’ (that penguins are
birds, for example, even though they do not fly) and hence reduce the number of
traits objects in the hierarchy. Without overriding, inheritance hierarchies may
have a structure where the majority of some behaviour is inherited from one
object, but other small objects may have to exist for sharing related behaviour
between subsets of those objects. Thus, related behaviour may have to be split
between more objects than necessary if overriding is not allowed. Overriding can
allow an object to inherit most of its behaviour from another object, but over-

ride some slots in order to specialise its behaviour, thus avoiding the need for

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 60

an additional object to define that specialised behaviour. Figure 3.16 shows a
hierarchy (used as an example in the released version of Guru [Guru]) which does

not contain overriding. Figure 3.17 is an equivalent hierarchy which does contain

birds
feathers

sea birds flying birds
eats fish flies

penguin vulture
doesNotFly

For conciseness, features are labelled to represent
values rather than names.

For example, ‘flies’ is an abbreviation of
‘methodOfMovement = (flies)’

overriding.

Figure 3.16: Hierarchy without overriding.

Two algorithms for reintroducing overriding are presented. Chapter 6 in-
cludes the results of applying the approach described in Section 3.5.2 on realistic
examples.

The reintroduction of overriding has been implemented so that it can be used
with any hierarchy, irrespective of whether it results from the IHI algorithm. The
[HI algorithm followed by the reintroduction of overriding is called the extended
IHI algorithm.

In the following algorithms, features are now defined both by their name
and their implementation. Features of the same name can override each other.
Features are only equivalent if they have the same name and the same implemen-
tation. A feature with the name ‘A’ is simply called a ‘feature A’. If an object

defines or inherits a feature A, then it is said to understand A.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 61

birds

feathers
flies
sea birds
eats fish
penguin vulture
doesNotFly

Figure 3.17: Hierarchy with overriding.

3.5.1 Identifying default implementations

This approach attempts to reintroduce overriding of a ‘default’ or ‘standard’
implementation of a feature by ‘non-standard’ versions of that feature.

The replacement offspring of an object A are those replacement objects which
inherit from A. The shared protocol of object A is the set of feature names un-
derstood by all the replacement offspring of A, excluding features inherited from
any object which A inherits from. This includes the set of feature names defined
by A, but will also include other feature names if the replacement offspring of A
define features of the same name.

All features whose names are in the shared protocol of A, in all the objects
which inherit from A, and which do not override another feature defined in an
object which inherits from A, are considered for being moved to A. The following
restrictions determine whether a feature M is moved to A.

Firstly, it must be possible to move feature M to object A. Some features
cannot be moved because of their implementation, which will depend on the
details of the use of the reintroduction of overriding algorithms. Details specific
to the reintroduction of overriding in Self programs are considered below; other

considerations may be necessary for other languages or uses. Self assignable slots

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 62

cannot be moved from leaf objects. If an assignable slot is moved from a leaf
object to any object which it inherits from, then copies of this leaf object will
share one assignable slot rather than each defining their own assignable slot.
Therefore, the behaviour of programs in which leaf objects are copied would not
be preserved, and copying leaf objects is very typical in Self programs. Also,
Self methods that contain resends may not be moved in some circumstances. If
a method contains a resend, it may not be moved to an object from which the
resend invokes a different method. For example, consider the objects shown in
Figure 3.18. The resend inside method n in object ol causes method m in object
pl to execute. If method nis moved to object p1, then the meaning of this method

is altered, as the resend would cause method m in object p2 to execute instead.

p2
m = (code)

pl
m = (thing)

ol
n = (resend.m)

i

Figure 3.18: Reintroducing overriding must not alter resends.

Similarly, a slot should not be moved if it will result in a resend elsewhere
in the system being altered. In Figure 3.19, if slot s is moved from object 02 to
object tl1, then a resend of s in a method in object ol will be altered, as it will
now cause s in object t1 to execute instead of s in object t2.

Secondly, A must not already contain a feature M. This is because it is not

possible to move another feature M to A in such circumstances.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 63

Figure 3.19: Reintroducing overriding must not alter resends.

Thirdly, moving feature M to A must not introduce an ambiguity. In Fig-
ure 3.20, if method m in object Y was moved to object A, then the message ‘m’
sent to object Y would be ambiguous. This introduces an error unless the ambi-
guity is resolved. Such ambiguities can be resolved by automatically creating a
method which uses a directed resend to disambiguate the method to be executed
(see Section 2.3.1). If a disambiguating method needs to be created in order to
move a method, and no slots or objects are removed by moving that method, then
an extra method will have been introduced into the hierarchy, with no benefit,
which is not desirable. Therefore, it is better not to introduce the ambiguity in
the first place.

The fourth consideration is that the implementation of M must be the one
used by the largest number of replacement offspring of A. This is to meet the
requirement that the ‘default’ implementation of M is inherited by all the re-
placement offspring of A, and overridden by those replacement offspring of A
which require a ‘non-standard’ implementation. Note that this does not mean
that the implementation must be duplicated many times, but that this implemen-
tation is used to implement M for the largest number of replacement offspring. In

the example shown in Figure 3.21, the replacement offspring of object A are the

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 64

The implementations of m in objects X,Y and Z are different.

Figure 3.20: Reintroducing overriding must not introduce ambiguities

leaves of the hierarchy. Feature m in object B is inherited by 3 of the replacement
offspring of A, and m in object C is only inherited by 2. Therefore, it is m in
object B which is moved to object A. If there is no single implementation used

by the largest number of replacement offspring, then none is chosen.

The implementations of m in objects B and C are different.

Figure 3.21: The ‘default’ implementation is to be overridden by the ‘non-
standard’ implementations.

The IHI algorithm will result in there being no duplication of implementations
of features of the same name; however, the reintroduction of overriding has been
designed so that it can be used for hierarchies whether they result from the
IHI algorithm or not. Different features which have the same implementation

are treated as equivalent, and so when an implementation of a feature is moved

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 65

to reintroduce overriding, all equivalent features that can then be removed are
removed. Figure 3.22 shows an example where three equivalent implementations

(in objects D, E and F) would be removed, and one of them moved to object A.

The implementations of m in objects D, E and F are equivalent,
and different to that in object C.

Figure 3.22: The ‘default’ implementation may be defined in more than one
method.

Finally, a feature is not moved to A unless its implementation is a possible im-
plementation for all the replacement offspring of A, even though it is overridden
by some of them. In Self, this means that all replacement offspring of A under-
stand all the messages sent to implicit self in that implementation (the messages
sent to implicit self are those messages which do not have an explicit receiver, as
explained in Section 2.3). The reason for this is to make sure that the feature
to be moved represents a ‘default’ implementation to be overridden by some ob-
jects, rather than an implementation which is applicable only to certain objects.
In Figure 3.23 the method includes: in object OrderedCollection can be moved to
object Collection because all the messages sent to self in this method (i.e. do:) are
understood by Set, so this implementation would work for Set. The reason Set
has a different implementation is for efficiency. In this example, moving includes:
from OrderedCollection to Collection ‘makes sense’ as it is overridden by includes:
in Set for efficiency, rather than because it is not applicable. In Figure 3.24 the

method add: cannot be moved from object OrderedCollection to object Collection

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 66

because it sends the messages makeSpaceAtEnd and last: which are understood
by children of OrderedCollection but not by Set. Therefore, this implementation

is not applicable to Set, so should not be in its inheritance path.

Collection

OrderedCollection
includes: e = (
do: [| :each |
(each =)
ifTrue: [Mrue]].
false)

Set

includes: e = (
at: (indexFor: e)
IfAbsent: [*false].
true)

Figure 3.23: A ‘default’ implementation which is applicable to all replacement
offspring.

If moving features results in any objects defining no features (because all
of them have been moved higher in the inheritance hierarchy) then that object

should be removed as described in Section 3.5.3.

3.5.2 Removing anomalous traits objects

An alternative approach to reintroducing overriding is described in this section.
Rather than attempting to identify default implementations which can be over-
ridden where necessary, the approach described in this section is to simplify the
inheritance hierarchy by removing objects which represent anomalies due to over-
riding not being considered by the IHI algorithm. The approach considers only

objects below an arbitrary size (number of features), which can be chosen by the

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 67

Collection
OrderedCollection
add: e = (makeSpaceAtEnd.
last: e.
self)
Set
add: e = (
(includes: e)
ifFalse: [privateAdd: e].
self)

Figure 3.24: A ‘default’ implementation which is not applicable to all replacement
offspring.

user.

If all the features of such an object may be moved to a parent, then they are
moved and the hierarchy restructured as described in Section 3.5.3. If this empty
object, E, is not removed from the hierarchy before the next object is considered
for the reintroduction of overriding restructuring, features could be moved into
E, and the chance to remove it from the hierarchy would be lost.

The order that potentially anomalous traits objects are removed affects the
resulting hierarchies. In order to remove as many as possible, the potentially
anomalous traits objects are considered for removal in the order of highest (that
is, the objects with the deepest chain of children) first.

A feature may only be moved to a parent if it does not introduce an ambiguity
and if it is a possible implementation for all the replacement offspring of the

parent, as explained in Section 3.5.1.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 68

3.5.3 Removing empty traits objects

This section describes how a traits object which defines no features (because they
have been moved by the reintroduction of overriding) can be removed from an
inheritance hierarchy. All the children of such an object are modified so that
their parents include all the parents of the object to be removed. Figure 3.25
shows an example of a hierarchy containing a traits object which does not define
any features. The children of object A are modified so that they inherit from the

parent of object A, thereby removing object A from the hierarchy, as shown in

o

-

object A now defines no slots

Figure 3.26.

BN

)

Figure 3.25: Hierarchy containing an empty object

Note that removing an empty object can result in inheritance links which
are unnecessary due to transitivity, as the example in Figure 3.26 shows. These
unnecessary inheritance links can be removed using an algorithm similar to that

described in Section 3.3. The resulting hierarchy is shown in Figure 3.27.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 69

Figure 3.26: Hierarchy after removing empty object

Figure 3.27: Removing transitively unnecessary inheritance

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 70

3.6 Limitations and problems

The extended IHI algorithm aims to infer hierarchies which reflect the inherent
structure of objects. This hierarchy may not be ideal for future reuse and may
not reflect real world abstractions, as these are not possible to infer from ob-
jects and their features alone. A programmer may use information from outside
a system when creating an inheritance hierarchy, in particular domain knowl-
edge and knowledge gained from experience, to produce hierarchies which reflect
predictions for future extensions and reuse of a hierarchy.

However, as discussed in Chapter 4, even programmers cannot predict the
future accurately, so hierarchies may often require restructuring after changes
have been made, despite attempts to make them easy to evolve and reuse.

The reintroduction of overriding relies on the existence of suitable parent
objects to move slots into. In some cases, such parent objects may not exist, and
the algorithms for reintroducing overriding will not be able to work. In practice,
such situations are rare as, if objects are closely enough related that they could
share a feature which was overridden by some of them, then they should already
share at least one feature not overridden by any of them, and hence a suitable

parent object will exist.

3.7 Applications of the inheritance hierarchy in-
ference algorithm

The extended IHI algorithm has been designed to create inheritance hierarchies
for any group of objects. The precise meaning of features and their equality has
to be defined according to the intended use of the algorithm, and the sort of
programming language for which it is being used.

If features are methods defined only by name, then the result will be a hier-

archy of messages understood, which is used as the meaning of ‘type’ by some

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 71

users of dynamically typed languages. Hierarchies of messages understood are
discussed in [Cook92], and are called protocol hierarchies.

Alternatively, for inferring a ‘type hierarchy’ for a statically typed language,
features could be defined by their name and their type. This definition of features
has been used in the implementation of a design tool [Pun90].

Chapter 4 explains how the extended IHI algorithm has been used in the
implementation of a restructuring tool [Moore95] for the dynamically typed lan-
guage Self [Ungar87], defining features by their name and their ‘meaning’, where
the meaning of a method is a parsed version of it. For restructuring a stati-
cally typed language, method features would also have to include the types of
arguments and return values.

The extended IHI algorithm may be useful for data mining [Holsheimer94]
and conceptual clustering [Fisher87] on small sets of data. However, the extended
IHI algorithm uses only information about the features of objects and does not
use heuristics for approximating a good hierarchy for very large collections of
objects, or heuristics based on domain knowledge. Therefore, there are only
limited circumstances in which the extended IHI algorithm is likely to be suitable

for such applications.

3.8 Comparison with previous work

Problems similar to inferring inheritance hierarchies appear in several areas of
research, in particular data mining [Holsheimer94] and conceptual clustering
[Fisher87]. However, these applications are significantly different to the inference
of inheritance hierarchies because they involve inferring an approximate hierarchy
from a large set of possibly incomplete data (for example, [Cheeseman88| creates
hierarchies based on probabilities), rather than inferring a precise hierarchy from

a (relatively) small set of complete data.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 72

There have been other investigations of automatic inheritance hierarchy con-
struction from object descriptions, producing hierarchies which satisfy different
criteria. The criteria used by the IHI algorithm will be referred to as the IHI

criteria.

3.8.1 Bergstein, Lieberherr et al

Bergstein [Bergstein91| presents a notation for representing inheritance hierar-
chies, called class dictionary graphs, and a collection of transformations. He
proves that these transformations preserve the behaviour of objects, and are the
minimal number necessary to be able to transform a class dictionary graph into
any other equivalent one. He limits the hierarchies considered to those which do
not contain cyclical inheritance. His work is used as the basis for the inheritance
hierarchy restructuring algorithms described in [Lieberherr91].

Lieberherr et al [Lieberherr91] adopt the first two IHI criteria, but replace
the other IHI criteria with a requirement that the number of inheritance links
should be minimised. This clearly subsumes the fourth IHI criterion, but gives
different results from the third IHI criterion. For example, while the third IHI
criterion will give the hierarchy shown in Figure 3.28, the minimality requirement
of [Lieberherr91] forces one of the top edges to be removed, leaving a hierarchy like
that of Figure 3.29. (Any other top edge could be removed instead.) This reduces
the amount of inheritance, which is generally desirable, but at the expense of an
arbitrary decision which does not reflect the structure inherent in the objects.

The first part of Lieberherr’s algorithm produces a graph in what he calls
Common Normal Form, which is equivalent to the mapping graph produced in the
IHI algorithm. The construction of the inheritance hierarchy from the Common
Normal Form graph involves the equivalent of examining pairs of vertices for every
combination of the incoming InheritanceEdges of each of the TraitsVertices, and
modifying the graph for one pair of vertices at a time, until no more modifications

can be made. Despite its greater complexity, it does not guarantee to satisfy either

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN

Figure 3.28: Hierarchy produced by the IHI algorithm

Figure 3.29: Hierarchy satisfying minimal inheritance criterion

73

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 74

their criteria or the IHI criteria; a reason for this is discussed in Appendix A.3.
The THI algorithm can be extended to meet Lieberherr’s criterion by adding
a new final step. The label of a TraitsVertex is given by the set of replacement
objects which inherit from the traits object. This must be equal to the union
of the labels of its children, since the inheritance passes through them, but their
labels will not necessarily be disjoint (due to multiple inheritance paths). The
new step considers every TraitsVertex CV, to find the smallest set S which has the
union of the labels of S equal to the label of CV. This is not necessarily unique,
as Figures 3.28 and 3.29 show. The InheritanceEdges to CV from the children
not in S are then deleted. The result is a hierarchy where the features inherited
by each object are unaffected, but the number of InheritanceEdges is minimised.
This new final step will require time exponential in the number of children of each
TraitsVertex, as it is equivalent to the minimum cover problem which is known
to be NP-complete [Garey79]. In the worst case, the number of children of a
TraitsVertex may be the number of original objects. Therefore, in the worst case
the final step will be exponential. However, in practice the maximum number of
children of any TraitsVertex is often small enough for this final step to be feasible

if required.

3.8.2 Cook

Cook [Cook92] describes algorithms for extracting protocol information from
Smalltalk classes, and for creating a protocol hierarchy for that set of classes. The
meaning of protocol is the set of messages understood by objects of a class, ignor-
ing methods which cancel inherited methods (shouldNotlmplement) and methods
which have not been implemented (subclassResponsibility). Cook’s motivation for
creating protocol hierarchies is to identify design problems in inheritance hierar-
chies; he analyses the Smalltalk collection classes as an example. He concludes
that the protocol hierarchy represents a client’s view of a collection of classes,

and an inheritance hierarchy is an tmplementor’s view. Furthermore, these two

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 75

hierarchies are different in the case of the Smalltalk collection classes, and may
be different in general.

The THI algorithm is similar to Cook’s algorithm for creating a protocol hi-
erarchy from a set of protocols, but was discovered independently. There is a
considerable difference in the detail that Cook gives in describing his algorithm;
he does not explicitly state all the properties of the hierarchies produced, nor does
he fully explain how to handle classes which do not define any unique features?,

and his explanation of building the inheritance links is terse [Cook92]:

“A topological sort by set inclusion of the sets of classes in the

domain hierarchy gives the protocol hierarchy.”

(The ‘domain hierarchy’ is the equivalent of the ‘initial grouping graph’ in

Figure 3.9.)

3.8.3 Dicky et al

Dicky et al [Dicky96] describe an algorithm for incrementally inserting a class
into a hierarchy while maintaining a Galois SubHierarchy. Consequently, their
hierarchies satisfy the criteria of [Mineau90, Mineau95] and the first four criteria
of the THI algorithm.

The main innovations of their work are considering overriding of features, and
incremental insertion of classes while maintaining the properties of the hierarchy.

The hierarchies produced by their algorithms will not necessarily be the same
as those produced by the extended IHI algorithm. This is because their algorithm
relies on a pre-determined order that features can override each other. They
suggest ways of semi-automatically determining a suitable ordering for overriding
of features. As the algorithms described in Sections 3.5 use whatever ordering of

overriding that is most useful given the results of the IHI algorithm, they may

'In Section 3.4 it is explained how a unique feature is explicitly added to each ‘class’ to avoid
this problem.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 76

be capable of producing better results than if constrained by a pre-determined
order.

An algorithm which allows classes to be inserted incrementally into a hierar-
chy would appear to be preferable to a non-incremental algorithm such as the
extended IHI algorithm. However, there are problems using such an incremen-
tal algorithm in practice, because it relies on the hierarchy being in a particular
state before inserting a new class. An inheritance hierarchy cannot realistically
be maintained in the appropriate state, as this would involve restructuring the
hierarchy every time a method or object is added, deleted or modified. Further-
more, as their algorithm maintains a Galois SubHierarchy, it cannot be applied
to part of a hierarchy, but must be applied to an entire hierarchy. In practice, a
programmer will not want a hierarchy to be restructured too often, and will want
to only restructure part of a hierarchy, as the overhead for learning a restruc-
tured hierarchy may be considerable. In practice, restructuring is best performed
at programmer determined times and on programmer specified groups of objects.
For example, a programmer can specify a restructuring for a hierarchy once the
(predicted) improvement in hierarchy structure more than compensates for the

overhead of learning a new restructured hierarchy.

3.8.4 Godin et al

Godin et al [Mineau90, Mineau95] describe an algorithm, discovered indepen-
dently, which produces results similar to those of the IHI algorithm. Their
algorithm was originally used for knowledge acquisition from data bases, but
Godin [Godin93] also describes using Galois lattices as the basis for inheritance
hierarchy structuring.

Their hierarchies satisfy the first four THI criteria, but not the fifth. That is,
in the results of their algorithm, the equivalent of preserved objects do not have
to be leaves of the inheritance hierarchy. Section 3.2 shows how this can affect

the hierarchies inferred.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 77

In their algorithm, features of objects are represented as a collection of triples
of the form (object,relation,object), for example, (koala,eats,gumTreeLeaves).
For each object all those triples are also included with ‘wild-cards’ (indicated here
as ‘?’) replacing the actual values in the triples. For example, (?,relation,object),
(object,relation,?), (?,relation,?), (object,?,object), (?7,7,0bject) et cetera. This
requires eight such triples for every feature. The benefit from including these
triples is that additional potentially useful information is inferred, in particular
generalisations can be inferred, such as ‘all animals have a certain number of legs’.

Their algorithm involves building a table of these triples, and then construct-
ing the inferred inheritance hierarchy using a single pass through each element
of the table. The way their algorithm constructs inheritance edges is similar to
the THI algorithm, but uses one slightly more complicated stage rather than two
simple stages.

The computational complexity of their algorithm is claimed to be O(n?),

where ‘n’ is the number of original objects.

3.8.5 Light

Light [Light93] describes an algorithm for inserting a new ‘class’ into an existing
inheritance hierarchy. Despite the difference in application area between his work,
which is in natural language lexicons, and object-oriented programming, there are
similarities which motivate the inclusion of a reference to his work. He presents
a formalisation of the problem of inserting a class into an existing hierarchy, and
shows that (for his definition) this is an NP-complete problem. He then presents

an efficient, but approximate, algorithm for solving this problem.

3.8.6 Pun and Winder

The hierarchies constructed by Pun and Winder [Pun89] satisfy the first IHI
criterion, but are not guaranteed to satisfy the other IHI criteria. Furthermore,

they favour multiple inheritance over single inheritance. The stronger IHI criteria,

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 78

which have been justified on general grounds, seem to lead to better hierarchies.
An example taken from [Pun90] shows the difference between the results of their
algorithm and the results of the THI algorithm. The objects in this example
are defined as shown in Figure 3.30. Their algorithm produces the hierarchy in

Figure 3.31, while the IHI algorithm produces the hierarchy shown in Figure 3.32.

ol 02 03 o4
a0, al, a5, ao, al, a2, ao, a2, a4, al, a2, a3
a7, a8 a4, ab a6

Figure 3.30: An example from [Pun90]

a5

01&?%%/

a7, a8

Figure 3.31: Hierarchy produced by [Pun90]

Q%

02

ol

a7 a8 a3

Figure 3.32: Hierarchy produced by the THI algorithm

Their algorithm involves iteratively factoring-out the feature that is repeated

most often, until no more factoring can be done.

CHAPTER 3. AUTOMATIC INHERITANCE HIERARCHY DESIGN 79

3.8.7 Wolff

Wolff [Wolff94] suggests that good design of software may be seen as information
compression, and provides an example of discovering an inheritance hierarchy
from object definitions. However, Wolff does not explain the details of his al-
gorithm and admits that the hierarchies discovered depend on the ordering of
object definitions. Wolff’s example does not require multiple inheritance, and no
mention is made of whether multiple inheritance hierarchies may be constructed

by his algorithm.

3.9 Summary

The THI criteria are formally described in Appendix A.1 and the algorithm itself
is formally described in Appendix A.2. A formal discussion of the complexity of
the algorithm is presented in Appendix A.3.

The design of inheritance hierarchies is important, and difficult. The extended
IHI algorithm infers an inheritance hierarchy which satisfies well justified criteria,
for any set of objects. This algorithm is useful for a variety of applications,
in particular for inheritance hierarchy design and restructuring [Lieberherr9l,
Moore95, Pun89]. Compared to other algorithms for achieving similar results,
the extended IHI algorithm is simple and easy to understand and implement and
produces results which satisfy better justified criteria. A simple implementation
is described which has been efficient enough for use on problems of up to 500

objects.

Chapter 4

Inheritance Hierarchy

Restructuring

Some object-oriented design methods encourage the designer to think of the in-
heritance hierarchy very early in the production of a software system. Many
developers think of the inheritance hierarchy as basically static; they will add
to it, but are reluctant to restructure it. This is not surprising, as restructuring
inheritance hierarchies is difficult and error prone. Automatic restructuring re-
quires no programmer effort and does not risk the introduction of errors. This
chapter describes Guru [Moore95], a prototype tool for automatically restructur-
ing an inheritance hierarchy into one that contains no duplicated methods, while
preserving the behaviour of programs.

The inevitability of change in software development has been known for many
years [Brooks75]. Software has to evolve to meet changing requirements. This
should include evolution of inheritance hierarchies, and consequent restructur-
ing to keep them well designed [Johnson88]. Without restructuring, inheritance
hierarchies can deteriorate, as shown by the example in Section 2.4. Even the
core libraries of object oriented programming languages are imperfect [Cook92]
and have required restructuring between releases [Meyer90]. As mentioned ear-

lier, manual restructuring of inheritance hierarchies is difficult and error prone.

80

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 81

By providing a tool for automatic restructuring of inheritance hierarchies, more
frequent restructuring is encouraged and made feasible. Guru is designed so that
it can be used on part of a system, rather than having to restructure an entire
system.

Guru can only restructure non-reflective programs. Reflective programs de-
pend on the structure of their objects, as explained in Section 2.3.4. Changing
the structure of objects involved in a reflective program can change the behaviour
of those reflective programs. As Guru is intended not to change the behaviour of
programs, it can only be used safely for non-reflective programs.

Guru has been designed to restructure only run-time error free programs. Incorrect
programs may cause Guru to fail to work, or to produce restructured programs which

do not preserve the (incorrect) behaviour of the original programs.

4.1 Introduction

The user specifies which objects are to be included in a restructuring (called
the original hierarchy. See Section 7.1.2 for a description of a user interface for
specifying the original hierarchy). These objects do not need to be related by
inheritance, and do not need to form a complete inheritance hierarchy. Guru
restructures the original hierarchy by discovering which of the objects in it need
to have their behaviour preserved, removing their current inheritance hierarchy,
and then inferring a replacement inheritance hierarchy using the extended IHI
algorithm described in Chapter 3. The replacement hierarchy is created without
affecting the original hierarchy, and the user can choose whether or not to use it to
replace the original hierarchy. The inheritance hierarchy restructuring performed
by Guru is called IHR.

An example of the effect of Guru is that the original hierarchy shown in Fig-
ure 4.1 can be restructured into the replacement hierarchy shown in Figure 4.2.

If required, a different inheritance hierarchy inference algorithm could be used.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 82

However, the extended IHI algorithm produces hierarchies which satisfy well jus-
tified criteria.

In the figures, slots with the same name are equivalent unless stated otherwise.
Note that slots m1, m7 and m8 are duplicated in the original hierarchy shown in
Figure 4.1, but in the restructured hierarchy no slots are duplicated. The objects
ol to o5 in the restructured hierarchy have the same behaviour as the objects
ol to o) in the original hierarchy, and so can be used to replace them without

affecting the behaviour of programs.

This represents an object called ‘010’

010 which has a slot (method or data) called ‘m15’.
m15 To simplify the figures, slots are shown as
only the name of the slot, and two slots with

the same name are equal in these examples.
An arrow represents inheritance. In the
example below, ol inherits from t1.

o4
m7, m8, m10

05
m8

ol

m5 m7, m9

Figure 4.1: Example inheritance hierarchy

The objects in the original hierarchy whose behaviour needs to be preserved
will be called the preserved objects. Section 4.2.1 will explain how the preserved
objects are identified. In the example shown in Figure 4.1, the objects ol to 05

are the preserved objects. The objects in the restructured hierarchy which replace

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 83

t5 t7

Figure 4.2: Example restructured inheritance hierarchy

preserved objects will be called replacement objects. Objects in the original hier-
archy which are not preserved objects, and objects in the restructured hierarchy

which are not replacement objects, will be called traits objects.

4.2 Preserving the behaviour of a system

In order for a restructuring to preserve the behaviour of the system, all of the
objects in the original hierarchy which must be preserved need to be identified.
In order to benefit from as much restructuring as possible, only those objects
which must be preserved should be identified. Therefore, the preserved objects
identified should include all necessary objects but no more, in order not to limit
the number of objects which can be restructured and hence the effectiveness of

the restructuring.

4.2.1 Identifying which objects to preserve

Some simple heuristics are applied by Guru to determine which objects should
have their behaviour preserved. These heuristics, described below, partly rely on

the way that Self systems are structured [Ungar91], and in practice have been

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 84

adequate. A more accurate way to determine which objects to preserve would
be to use sophisticated type inferencing [Agesen95| to identify which objects are
sent any messages; it is these objects which need to be preserved.

Objects which do not have children, i.e. leaves of the inheritance hierarchy,
represent concrete objects, or ‘instances’ as they would be called in a class-centric
programming language. At least these objects need to be preserved. This is
the case in the example used in Section 4.1 (see Figures 4.1 and 4.2). Note
that the leaves of the hierarchy to be restructured must be preserved, even if
they are not leaves of the complete inheritance hierarchy. This is necessary to
preserve the behaviour of objects not included in the restructuring which inherit
from restructured objects. Additional complications due to restructuring partial
hierarchies are discussed in Section 4.3. Further heuristics, described below, are
used to identify other objects which need to be preserved.

It is straightforward to allow the user to specify that certain objects should

be preserved in addition to those determined automatically.

Assignable parent slots

The existence of assignable parent slots in Self requires further objects to be
preserved. Objects inherit from the objects referred to by assignable parent slots
in the same way that they inherit from non-assignable parent slots. In order
to preserve the behaviour of an object containing an assignable parent slot, any
object used as the value of an assignable parent slot needs to be preserved. In
general it is impossible to predict which objects will be assigned to an assignable
parent slot, as it could be any object in the system. At least the current object
assigned to the slot is one possibility. In practice, the other possibilities are
objects which are explicitly referred to, i.e. objects which are the values of non-
parent slots. Preserving the behaviour of all leaf objects and all objects which
are referred to by either assignable parent slots or by any other non-parent slots

has been adequate in practice.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 85

There is the possibility of failing to preserve an object which needs to be
preserved, if an object which is not referred to by a non-parent slot (i.e. is only
referred to by a parent slot) is either sent a message, or assigned to an assignable
parent slot. Such situations do not normally occur in Self programs as they rely
on the inheritance hierarchy structure and so are essentially reflective. Figure 4.3
illustrates a situation in which there is the possibility of failing to identify all
objects which should be preserved. Object ol defines an assignable parent slot
called parent, and object 02 defines a (non-assignable) parent slot called parent.
Objects 0l, 02 and pl will be identified as preserved objects. If p2 is not preserved,
but in the original code is sent a message, or p2 is assigned to parent in object

ol, then the behaviour of the original code will not be preserved.

Figure 4.3: Objects referenced only by parent slots are not preserved.

Delegation

In the current version of Guru, delegation is not handled explicitly. If preserved
objects are delegated to, then there is no problem with the restructuring, as this
delegation will still work because the replacement object delegated to will cause
the same code to be executed. However, if non-preserved objects are delegated
to, then these delegations will not work, as equivalent objects may not exist in
the restructured system. Non-preserved objects are those objects referred to only
by non-assignable parent slots, and hence exist only for inheritance hierarchy

structuring. Therefore delegating to non-preserved objects is reflective as it relies

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 86

on the structure of the inheritance hierarchy, and hence should not occur in
normal Self programs. However, if required, non-leaf objects which are delegated

to could be manually included as preserved objects.

The ‘traits’ object problem

There is a common situation which causes more preserved objects to be identi-
fied than desirable, unnecessarily limiting the amount of restructuring that can
take place. Many parent objects are referred to by non-parent slots (as well as
parent slots) as a convenient way to refer to them while developing a system.
Such non-parent references do not affect non-reflective programs. If such par-
ent objects are to be restructured by Guru, their non-parent references must
be removed otherwise they will be preserved, hence limiting the amount of re-
structuring possible and resulting in poor inheritance hierarchy structures, as
discussed in Section 4.3.2. After restructuring, new non-parent references can be
reintroduced by the programmer if this is required.

In general, it is not possible for the system to automatically decide which
non-parent references it should remove, other than removing all of them, which
may not be desirable. Furthermore, it is not possible for the system to automati-
cally rebuild new non-parent references after restructuring, not least because the
system cannot invent meaningful names for the newly created objects. The non-
parent references to parent objects are considered bad style by some [Ungar94b],
as not only are they reflective but they also indicate a class-centric way of think-

ing, contrary to the philosophy of Self.

4.3 Restructuring part of a system

Guru is designed so that it can be used on part of a system, rather than having to
restructure an entire system. Restructuring only part of a system avoids changing

things which one does not want to have changed. A reason for wanting only part

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 87

of a system to change is to avoid the benefits of a restructured system being
outweighed by the effort to learn about the restructured version of the system.
Furthermore, restructuring only parts of a system is faster than restructuring the
entire system, which may take too long to be feasible.

The user manually specifies what should be included in the restructuring.
Consideration has to be given to situations in which not all the children of the specified
objects are included in the restructuring, as their parents might not exist after
restructuring. In such circumstances the system would not be able to replace the
parent(s) of an object not included in a restructuring with a replacement object.
In this situation, a child object not included in a restructuring would require the
unrestructured version of its parent to exist after restructuring, in addition to
the replacement object for the child’s parent required by objects included in the
restructuring. Consider the hierarchy shown in Figure 4.4. Figure 4.5 shows how
the system would be restructured if object C is not included in the restructuring,
and a simplistic approach taken. Such an approach is unsatisfactory, as it results
in a considerable amount of duplication, and a worse structure, which is exactly

contrary to the aims of restructuring.

EObjects included in restructuring
! B

Figure 4.4: Example where a child is not included in restructuring

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 88

B
ml
'Result of restructuring
T A Object A is still required for
m2 object C, as there is no object
ml, m2, m3 ; in the restructured system that

- can replace object A.

C
m5, m7

Obiject not included in restructuring

T1 does not have the same protocol as any
object in the unrestructured system.

Figure 4.5: Result from simplistic approach

The approach taken by Guru is to include as a preserved object, any object
which has children not included in the restructuring. The result of restructuring
the hierarchy in Figure 4.4 (with object A as a preserved object) is shown in
Figure 4.6.

An alternative approach would be for the user to specify for the restructuring
only those objects for which all their children could be included (i.e. only objects
D and E), resulting in the hierarchy shown in Figure 4.7. However, this would
not allow as much restructuring as possible.

The best results would be obtained if all the children of the user’s original
choice of objects to be restructured can be included (i.e. objects A, B, C, D
and E), as shown in Figure 4.8. However, this may not always be possible; for
example, there may be too many children of an object to include all of them, or
the programmer may require some of them to remain unrestructured for some
reason (for example if they contain reflective code, so it is unsafe to restructure

them).

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 89

In this example, A# does not
77 define any unique slots except
' Result of restructuring 1 its parent slot - T1.
i T1 i A# only exists as a replacement
ml, m2 for A, so that C still has a

! suitable object for its parent.

1 C could use T1 instead of A#,

1 but the algorithm used creates

I unique objects to replace every
A# preserved object.

' Objects similar to A# can be
' spotted and removed

/ 1 automatically.

Object not included in
restructuring

Figure 4.6: Result when A is included as a preserved object

' Result of
restructuring

m3

Object not included in restructuring

Figure 4.7: Result when A and B are not included in the restructuring

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 90

Figure 4.8: Result when A, B and C are included in restructuring

4.3.1 Introduction of ambiguities

Restructuring only part of a system can result in ambiguous message sends being
introduced, as shown in Figure 4.9. Any ambiguities introduced are spotted and
removed by automatically adding disambiguating methods.

Ambiguities can be introduced in a slightly more subtle way. Consider the
hierarchy resulting from a restructuring shown in Figure 4.10. Object A was not
included in the restructuring, and defines a method m which is overridden by m
in object C. Due to the way message lookup is defined in Self, the message m is
now ambiguous for object B, because two implementations are found by method
lookup; one in A and one in C, even though the definition of m in C might
be expected to override the definition in A. The language Cecil [Chambers93]
includes an automatic disambiguating rule for such situations, but this was not
included in Self due to the aim of making lookup semantics as simple as possible.

Note that ambiguities can only be introduced due to overriding of methods
from objects not included in a restructuring. If a complete inheritance hierarchy
is restructured then there will be no ambiguities introduced. Ambiguities can

only exist if the restructured inheritance hierarchy includes multiple inheritance.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 91

C
ml
Slot m1 has the same Tt oo
value in objects A and B Objects included in the restructuring
but may be different in A B
object C. m1 m1

Object A inherits from !
object C and redefines e ‘
slot m1.

ambiguity is introduced

A multiple inheritance LA B
for Object A

Figure 4.9: Ambiguities introduced by restructuring.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 92

object not A
included in m
restructuring

! restructured
hierarchy

m is ambiguous for object B

Figure 4.10: Ambiguities introduced by restructuring.

4.3.2 Consequences of preserving traits objects

Guru preserves traits objects which are included in a restructuring, if all their
children are not included, for the reasons described earlier. This approach can
result in badly structured hierarchies in some circumstances. Consider the hier-
archy shown in Figure 4.11.

If these objects are restructured, preserving the traits object 1 (as it has a child
not included in the restructuring), the resulting hierarchy is shown in Figure 4.12.

If all the children of traits object 1 contain a method p (for example, if they
are all copies of object 2) then a better restructured hierarchy would be that
shown in Figure 4.13. However, in this hierarchy, the behaviour of traits object
1 is not preserved as it now understands the message p. If objects inherit from
traits object 1 which do not contain a method p then their behaviour will also be
changed in the same way. This change in the behaviour of objects would normally

not be a problem, as code which relies on an object not understanding a message

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING

objects
included

in the ‘
restructuring .

Figure 4.11: Example hierarchy

objects
included

in the ‘
restructuring

,,,

Figure 4.12: Hierarchy preserving a traits object

93

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 94

is unusual. However, if traits object 3 defines an inheritance link to an object
which defines a different implementation of p to the one which it now overrides,
then this is a more serious change in the behaviour of the system. In this case,
objects which do not define p themselves but inherited the version of p defined
in an object above traits object 3 in the hierarchy, will now inherit the version in

traits object 3, and so behave differently in response to the message p.

objects
included

in the ‘
restructuring

,,,

Figure 4.13: Hierarchy not preserving a traits object

Using Guru automatically, it will choose the safest option, that is, it will
preserve any traits objects which have children not included in the restructuring.
In this example, this results in the hierarchy shown in Figure 4.12. To allow such
a traits object to not be preserved, in order to produce a better hierarchy such

as that shown in Figure 4.13 in this example, requires user intervention.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 95

4.3.3 ‘Cracking’, and including copies of leaf objects

Consider restructuring the hierarchy shown in Figure 4.14, which includes only a
prototype object and no copies of it, and a parent of the prototype object which
has no children other than the prototype. The hierarchy of Figure 4.14 will be
restructured into the hierarchy of Figure 4.15.

objects
included

in the
restructuring '

‘ar’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.14: Example hierarchy

The prototype object 1 now defines method slots, which may not be ideal, as
instead of sharing these methods between copies of the prototype, each copy of
the prototype will have its own copy of these methods. Therefore, there may be
consistency problems if these methods are altered. One possible solution would
be to make these methods into copied-down slots (see Section 2.3). The preferred
solution may be to have the methods in a traits object, which the prototype
object inherits from. A simple restructuring has been created for this, called
‘cracking’. Applied to any object, it creates a new parent object and moves all
the non-assignable slots there. Objects are left unaltered by this restructuring
if they have either no assignable slots, or no non-assignable slots. Figure 4.16

shows how the hierarchy appears having applied ‘cracking’ to prototype object 1.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING

1 objects :
2 included !

a: in the
restructuring |

‘a:’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.15: Restructured example hierarchy

objects
included

in the
restructuring !

,,

‘a:’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.16: Restructured example hierarchy, after ‘cracking’ object 1

96

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 97

If a copy of the prototype object exists in the system, but is not included in
the restructuring, then traits object 3 will have to be preserved, and the result of
restructuring will be the same as the original hierarchy. The result of applying
‘cracking’ to this hierarchy is shown in Figure 4.17. If the only children of traits
object 3 that exist or will exist are copies of the prototype object 1, then this
resulting hierarchy is not ideal as methods are unnecessarily split between two

traits objects. A better hierarchy would be that of Figure 4.16.

objects
included

in the ‘
restructuring

,,

‘a:’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.17: Example hierarchy after ‘cracking’

Consider the results of restructuring the same objects as in Figure 4.14, except
the only copy of the prototype object is included in the restructuring, as shown
in Figure 4.18. (Therefore, all the children of traits object 3 are included in the
restructuring). Restructuring this hierarchy will result in the hierarchy shown in
Figure 4.19. Note that assignable slots defined in different objects are not equal,

even if their name and current value is equal, as described in Section 4.4.1.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING

,,,,,,,,,,,,,,,,,

3 objects
n included
in the

restructuring !

‘a:’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.18: Example hierarchy, including copy of prototype object

,,,,,,,,,,,,,,,,,

objects
n included
s in the

restructuring '

‘ar’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.19: Restructured hierarchy, including copy of prototype object

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 99

As this appears to be the best hierarchy for these objects, users may think that
including a copy of the prototype object will result in good hierarchies. However,
this is not the case if only some of the copies are included, as the parent of the
prototype will then have children not included in the restructuring. For example,
if traits object 3 in Figure 4.18 has children not included in the restructuring,

then the result of restructuring is shown in Figure 4.20.

objects
included

in the ‘
restructuring

,,

‘a:’ is an assignable slot
‘n’ and ‘s’ are method slots

Figure 4.20: Restructured hierarchy, including one (but not all) copies of proto-
type

4.4 Removing existing hierarchies

This section explains what Guru needs to do in order to create a restructured in-
heritance hierarchy, after the objects to be restructured have been specified, and

the preserved objects discovered. The approach used by Guru is to remove the

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 100

existing inheritance hierarchy by ‘flattening’ the preserved objects, to discover the
object definitions to be used by the extended IHI algorithm to create a replace-
ment inheritance hierarchy. For all preserved objects, non-parent slots inherited
from objects included in the restructuring are copied into each corresponding re-
placement object. For example, for the objects shown earlier in Figure 4.1, the

flattened replacement objects are those shown in Figure 4.21.

ol 02 o3 o4 05
ml, m2, m5 ml, m2, m6 ml, m3, m4 ml, m3, m4 m4, m8
m7, m9 m7, m8, m10

Figure 4.21: Example problem flattened replacement objects

Non-assignable parent slots of objects included in a restructuring are not
copied into flattened objects. The aim of the restructuring is to discover an
improved replacement hierarchy, so inheritance information about the original
hierarchy is neither required nor appropriate.

Slots inherited from assignable parent slots are ignored by the flattening, as
these slots change dynamically depending on the value of the assignable parent
slot, and therefore cannot be statically copied into preserved objects. However,
assignable parent slots are included in flattened objects. Objects which may
be the values of assignable parent slots will be preserved (see Section 4.2.1), so
preserved objects which include assignable parent slots will behave the same after
restructuring, as they will still include the same assignable parent slot(s) and the
possible objects referenced by assignable parent slot(s) will be preserved.

Non-assignable parent slots which reference objects not included in the re-
structuring need to be included in flattened objects, so that the same slots are
inherited by preserved objects from objects outside the restructuring. This point
is further discussed in the following section.

Flattening objects has some benefits but also some problems. The most sig-

nificant feature of flattening is that all overridden slots are thrown away. This

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 101

is beneficial, because slots which are unused because they are always overridden
will be removed, and the inheritance hierarchy inferred by the THI algorithm will
have no overridden slots, thus simplifying the resulting system. Having many
slots overridden, or slots overridden many times, is often an indication of poor
inheritance hierarchy design [Johnson88|.

Flattening allows the removal of cancellation of inheritance from restructured
hierarchies. Cancellation of inheritance is achieved by using slots defined as
shouldNotImplement. Such slots are simply removed from flattened objects; hence,
the restructured hierarchies will not contain any shouldNotImplement slots, and
will also not inherit any of the slots which were overridden by those slots.

Slots which override an inherited slot, in an object outside the collection of
objects to be restructured, with an equivalent definition (‘overrides unnecessarily’
in Section 7.1) are also removed from flattened objects.

A disadvantage of flattening is the extra performance cost which it entails
compared to restructuring the inheritance hierarchy ‘in place’; but this is more

than compensated by its benefits.

4.4.1 Equivalence of slots

The way that equivalence of slots is decided has very significant implications. In
Guru’s restructuring, slots are only equivalent if they have the same name and
the same value.

The values of two methods are the same if their parsed versions are the same.
This is conservative as it misses cases where methods have the same effect but
are written slightly differently, which is known to be an undecidable problem.
One case which Guru does handle is where two methods are the same except
for the names of arguments. The names of arguments are ignored, only their
positions are important. Methods which are the same except for the position of
their arguments are not treated as equal by Guru, because the messages sends

resulting in the execution of methods would have to be modified in order to merge

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 102

such methods.

There is an important subtlety to consider for comparison of methods contain-
ing resends. Two methods can have exactly the same source code without being
equivalent if they contain resends. Consider the two methods called m in objects
ol and 02, shown in Figure 4.22. These two methods have exactly the same source
code, m = (resend.n), but are not equivalent. They cannot be replaced by a single
method, shared between the two objects 0ol and 02. This is because resends de-
termine which method to execute independent of the receiver (see Section 2.3.1).
Section 4.4.4 describes how the removal of resends from methods allows method

comparison to avoid this subtlety.

pl p2
n = (thing) n = (code)
ol 02
m = (resend.n) m = (resend.n)

Figure 4.22: Example hierarchy showing non-equality of methods containing re-
sends.

Assignable slots (including assignable parent slots) are only equivalent if they
are identical (that is, have the same identity; they are equivalent if they are the
same slot). Two different assignable slots can have the same name and the same
current value, but are not equivalent. This is so that assignable slots are shared
by exactly the same set of objects after restructuring as before, as is necessary to
fully preserve the behaviour of a system. In Figure 4.23, the two slots labelled ‘a:’
are assignable slots with the same name and same (current) value. They must be
defined by the same objects after restructuring. The behaviour of the system will
not be preserved if objects ol and o2 share the same slot ‘a:’ after restructuring.

Similarly, in Figure 4.24, the assignable slot labelled ‘a:’ is shared by objects

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 103

ol and o2, and this must be the case after restructuring. If objects ol and o2
define their own assignable slots ‘a:’ after restructuring then the behaviour of the

system will not be preserved.

Figure 4.23: Example hierarchy showing non-equality of assignable slots.

Figure 4.24: Example hierarchy showing equality of assignable slots.

Non-assignable non-method slots (including parent slots for objects not in-
cluded in the restructuring, as explained in the previous section) are treated as
equivalent if the name and the current value is the same. Therefore, the objects
shown in Figure 4.25 are restructured into the objects shown in Figure 4.26. This
may not preserve behaviour in all situations. If a non-assignable slot’s value is
a mutable object (that is, has mutable state, such as the object referred to by
slot d in objects ol and 02 of Figure 4.25), then the mutable object should be
shared by exactly the same set of objects in order to preserve the behaviour of
the system (similar to when a slot is assignable). However, such programming

style is very unusual, and this potential problem has not necessitated a simple

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 104

correction to the system, which would be to check whether the object assigned to
a non-assignable slot is mutable. Note that it is possible to change the reference

of a non-assignable slot reflectively, but as mentioned earlier, the system can only

restructure non-reflective programs.

'objects included
'in the restructuring

ol 02
parent* = object3 parent* = object3
X<-4 X <-4
a=1 a=2
b=3 b=3
d = aSet d = aSet

m = (some code)

m = (some code)

Slots labelled ‘x <- 4’ are assignable slots whose current value is 4

Figure 4.25: Example hierarchy for showing equality of non-assignable slots.

Note that if two or more method slots are equivalent, one of those slots will
be chosen to be shared, replacing the others. Methods can be equivalent but
have different layout, commenting, and naming of arguments. Guru currently
choses one of the methods at random, but a more sophisticated approach would
be to chose the ‘best’ of the equivalent methods based on those details which are

different between the methods.

4.4.2 Removal of ‘place holders’

Sometimes methods are included which are intended to always be overridden,
in the style of ‘something = (childMustlmplement)’ (or subclassResponsibility in
Smalltalk). Such methods, often called place holders, are used as a form of

program documentation. Their purpose is to indicate that these methods need to

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 105

object3

parent* = object3
b=3

d = aSet

m = (some code)

Slots labelled ‘x <- 4’ are assignable slots whose
whose current value is 4

Figure 4.26: Restructured hierarchy showing equality of non-assignable slots.

be implemented (overriding the childMustlmplement definition) in order to reuse
other methods defined in the object containing the place holder methods.

If place holder methods are always overridden by the preserved objects of a
restructuring (as they should be), then they will all be removed by flattening. This
could remove valuable documentation. However, if such methods are included,
they may often be redundant, and can be erroneous. Instead of relying on a
programmer to include such methods, they can be discovered automatically, and
reasonably accurately using the following algorithm: To find the methods which
need to be defined in order to inherit from an object O, for all methods in O
and all the methods it inherits create a set of all messages sent to implicit self
(ignoring those messages which are arguments or local slots). The result is given
by taking away these messages from the full protocol of O (i.e. all the messages
it understands including those inherited).

The algorithm described has been implemented in Self (its user interface is

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 106

described in Section 7.1.2), and applied to objects in the Self standard image. For
example, applied to traits point this implementation indicates that ‘x’ and ‘y’ need
to be defined by objects which inherit from it. There are some improvements that
could be made to this; i.e. messages sent to explicit self and messages sent to
the result of message sends that return self should be included, but the algorithm
described is accurate enough in practice.

If any place holder methods exist in flattened objects, then it indicates that
they are erroneous as they should have been overridden. In his investigation of
the structure of a Smalltalk class hierarchy, Cook [Cook92] removed such methods
automatically, and all methods which rely on these methods manually. It would
be straightforward to implement the automatic removal of these methods from
flattened objects for Guru, but this has not yet been found to be necessary in

practice.

4.4.3 Removal of cyclical inheritance

Cyclical inheritance is removed by ‘flattening’, but does cause a small problem.
The ‘leaf’ nodes have to be chosen in some way if they do not already exist, as
shown in Figure 4.27. However this does not happen in practice, as at least one
of these objects will be referred to by a non-parent slot, and hence be chosen in
this way.

The behaviour of an object in a cyclical inheritance hierarchy is unaffected by
flattening. Such an object will understand (and not understand) the same mes-
sages and respond to them in the same way. A naive approach to method lookup
in the presence of cyclical inheritance could result in infinite lookup, but this is
avoided in Self. In Self, method lookup does not consider the same inheritance
link more than once. Therefore, an object with cyclical inheritance will fail in the

same way as its flattened equivalent, when sent messages it does not understand.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 107

A A
f1 f1
B B
f2 f2
c D c
4

No object is a leaf No object is a leaf

Object C is referenced by a
(non-parent) slot (f4) in object
D (which need not be included cC f1
in the restructuring) f2
3

Therefore, object C can be
flattened as shown

Figure 4.27: Cyclical inheritance problem

4.4.4 Removal of resends

Methods with resends are treated in a simple but effective way. A resend causes
method lookup to start in a parent of the object where the method containing the
resend is defined (see Section 2.3.1). Resends in methods would be meaningless if
nothing were done about them, as in the ‘flattened’ object there is no parent for
the resend to refer to. A simple solution to the problem of resends is to get rid of
them. Resends to non assignable parents are statically determinable, so a resend
in a method is replaced by a message send for a uniquely named method defined
within the same flattened object. A message send replacing a resend is called
a resend replacement send (RR send) and the uniquely named method which it
invokes is called a resend replacement method (RR method). The method invoked
by the resend is called the resend invoked method (RI method). The name of the
RR method is generated by concatenating an identifier representing the object
where the RI method is defined (unique for each object) and the name of the RI
method.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 108

The implementation of the RR method is created as a copy of the implemen-
tation of the RI method. (The behaviour resulting from the resend is preserved,
as self is the same object for the RR method as for the RI method.) RR methods
are included in the appropriate flattened objects. Each RR method will be shared
by IHR amongst all the objects which include an RR send in one of their methods
which will execute the RR method. Resends in RR methods are also flattened

by Guru. Figure 4.28 shows an example of how resends are flattened.

method ‘y’ in object A is
distinguished from method 'y’ in
object B, by use of unique names

A B - .
x = (xStuff) y = (otherYStuff) determined by F:onca-tenatlng the
y = (yStuff) name of the object with the name
of the method.
z
Z objectA_y = (yStuff)
Egarent/ " . objectB_y = (otherYStuff)
arent attens into objectA_x = (xStuff)

m = (resend.x.
aParent.y - bParent.y.
non - resend stuff)

y = (some code)

m = (objectA_x.
objectA_y - objectB_y.
non - resend stuff)

(xStuff)
('some code)

X
y

Figure 4.28: How resends are ‘flattened’

The approach to removal of resends described in this section allows for com-
parison of methods to take into account the fact that different resends which have
the same source code have different meanings, as explained in Section 4.4.1. The
flattening with removal of resends will convert the objects ol and 02 shown earlier
in Figure 4.22 into the objects in Figure 4.29 (including only objects ol and 02 in
the restructuring). Now the two methods called m, in objects ol and 02, are dif-
ferent, which is what is required. If the two objects were as shown in Figure 4.30,
the removal of resends would result in the objects shown in Figure 4.31, which
would be restructured into the hierarchy shown in Figure 4.32. In this case, the
two methods called ‘m’ are equivalent and are shared between objects ol and

02 by the restructuring, which is appropriate. Section 4.7 describes how these

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 109

objects can be improved by replacing the RR send in method m with a resend.

pl p2
n = (thing) n = (code)
ol 02
m = (objectpln) m = (objectp2n)
objectpln = (thing) objectp2n = (code)

,,,

Figure 4.29: Removing resends complements method comparison.

pl
n = (thing)

02

m = (resend.n)

ol

m = (resend.n)

| objects included in the restructuring

Figure 4.30: Example objects.

If an RI method is not overridden by all the children of the object where it
is defined, then duplication of the implementation of the RI method will exist in
the restructured hierarchy. The RI method and an RR method will both exist,
with the same implementation but different names. This introduced duplication
is contrary to the aims of IHR, and Section 4.7 describes how this duplication
can be removed by reintroducing resends to replace RR sends.

In the case of resends to assignable parents, the resend is left as it is, because
the restructuring process will guarantee that the assignable parent slot will still

exist for the same objects as before the restructuring, and that the assignable

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 110

pl
n = (thing)

ol 02

m = (objectpln)
objectpln = (thing)

m = (objectpln)
objectpln = (thing)

,,,

Figure 4.31: Example objects after flattening.

pl
n = (thing)

,,,

m = (objectpln)
objectpln = (thing)

ol

Figure 4.32: Example objects after restructuring.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 111

parent slot will refer to an object which has the same behaviour as before the
restructuring.

The system should check that the names of RR methods are not already
used by any methods anywhere in the system to ensure that such methods are
not executed inappropriately. This check is very simple to implement in Self.
Similarly, the system should check that there are no message sends anywhere in
the system which are the same as any RR send. This check is straightforward
in most cases, but it is possible to write code which sends messages that cannot
be determined until runtime (using computed selectors, described in Section 2.3).
Such a send could execute an RR method inappropriately. More subtlely, such
a send could have existed before restructuring with the result that it was not
understood, but after restructuring it would be understood, thus altering the
behaviour of the system. Programs which rely on an object not understanding a
certain message are unusual, so this potential problem is very unlikely.

The approach to handling resends was taken from [Moore94], where it was
used for a different purpose in a translator from Smalltalk [Goldberg90] into
CLOS [Keene89]. Calls of uniquely named functions (rather than methods) were
used to translate the equivalent of resends in Smalltalk (‘super’), because CLOS
does not have a direct equivalent. Furthermore, this approach allowed static
binding of translated resends in order to (marginally) improve the performance

of translated code.

4.5 Applying an inheritance hierarchy inference
algorithm

An inheritance hierarchy inference algorithm can now be applied to the flattened
objects. In Guru, the extended IHI algorithm described in Chapter 3 is applied
(using the reintroduction of overriding described in Section 3.5.2). The extended

IHI algorithm simply requires the object definitions, and that the (name and

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 112

implementation) equality of features is defined, and it can discover a restructured
hierarchy which has no duplicated features and the structure reflects the object
definitions. The extended IHI algorithm could be replaced by another algorithm
if required.

Having discovered the replacement hierarchy, the actual replacement Self ob-
jects are built. The replacement inheritance hierarchy can be further improved

through more restructuring, as described in the following sections.

4.6 Replacing original objects with restructured
objects

The newly created replacement objects can be used to replace the original ob-
jects. The structure of the replacement inheritance hierarchy, and details of where
methods are defined, or which objects they are inherited from, do not matter as
long as replacement objects have the same behaviour as the preserved objects they
replace. Each preserved object is modified, using ‘mirrors’ (see Section 2.3.4), so
that it defines the same slots as its replacement object. Only preserved objects
need to be modified, as all non-preserved objects must be referred to by only
parent slots (otherwise they would have been preserved), and the newly created
traits objects that are needed will be referred to by the preserved objects (either
directly or transitively). Once the preserved objects have been replaced, the orig-
inal non-preserved objects will be garbage collected automatically as they are not
referenced by any (non-garbage) object.

A detail which has not been implemented is the correct replacement of original
objects that have a non-standard mirror, such as mirrors vector (see Section 2.3.7).
A replacement object should be created with the same sort of mirror as the
original object. This minor implementation detail could be fixed in a future
version of Guru, but this has not been found necessary in the current prototype

version of Guru.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 113

If a programmer does not want to replace all the objects in a restructuring,
then this can cause redundancies to be introduced, similar to the situation when
all the children of a traits object in a restructuring are not included, and a
simplistic approach is taken (see Figure 4.5 in Section 4.3). If an object A is
replaced, but a child object B of one of A’s parent objects is not replaced, then the
parent objects of both A and B will have to exist in order to preserve the behaviour
of the system. For example, the objects in Figure 4.33 would be restructured into
the objects in Figure 4.34. If only object A was replaced, then the parent object
of B could not be replaced as otherwise B would not have a suitable object to
inherit from. Therefore, the hierarchy shown in Figure 4.35 would result. In order
to avoid introducing redundancies, all children of all parent objects of objects
replaced should also be replaced. In other words, only complete hierarchies should
be replaced. The current implementation of Guru will only perform the automatic
replacement of preserved objects with replacement objects for all of the preserved

objects in a restructuring.

' Objects

' included
Lin the

' restructuring

,,,

Figure 4.33: Original objects.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 114

Figure 4.34: Replacement objects.

Figure 4.35: Objects if only A is replaced.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 115

4.7 Reintroducing resends

Section 4.4.4 describes how the removal of resends may result in the introduction
of methods with duplicated implementations. In order to eliminate this dupli-
cation, and remove the RR methods, the system attempts to convert RR sends
back into resends.

The reintroduction of resends works by examining all RR sends (which are
identified by their unique names). As described in Section 4.4.4, the system
should not contain any methods which have the same name as any RR method
(which will be unique). The system (statically) determines the method which
will be executed (in the restructured inheritance hierarchy) by a resend of the
name of the original RI method called before the resend was replaced by the RR
send. If the method called by such a resend has the same implementation as the
RR method called (which is also statically determinable because it has a unique
name and will definitely be inherited), then the RR send is replaced by a resend
of the original RI method.

The current implementation of the reintroduction of resends only considers
reintroducing undirected resends (see Section 2.3.1). In some cases, it might
be preferable to reintroduce directed resends; for example, if the original resend
(replaced by an RR send) was originally directed, or if a method containing an RR
send is in an object defining multiple inheritance, particularly if the RI method
replaced by the RR method is now ambiguous.

Only RR sends, rather than message sends in general, can be replaced by
resends, because RR sends can be statically bound, as they invoke uniquely named
methods. That is, the method invoked by an RR send is statically determinable
as being the RR method which is the equivalent of the original RI method. A
normal message send is not statically determinable because of overriding, which
may exist in restructured hierarchies, because of methods defined in objects not
included in the restructuring, and by the reintroduction of overriding described

in Section 3.5.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 116

Having replaced as many RR sends as possible, any RR methods which are no
longer required, because the resends they existed to replace have all be converted
back into resends, are removed.

This simple technique has been successful in practice, but there are some cir-
cumstances where it fails to reintroduce resends. Consider the hierarchy shown
in Figure 4.36. This will be restructured into the one shown in Figure 4.37. In
this example, the resend removed by the RR method ‘objectlm’ cannot be rein-
troduced. Furthermore, the hierarchy is now simply two separate objects, which
may not be desirable. However, consider the hierarchy shown in Figure 4.38,
which will be will be restructured as shown in Figure 4.39. In this example, the
approach to reintroduction of resends described in this section can remove the
RR methods ‘objectlm’ and ‘object2n’, replacing the corresponding RR sends by

resends. The resulting hierarchy is then the same as in Figure 4.38.

objectl

m = (some code)

A B

X = (thing) m = (resend.m.

other code)

Figure 4.36: Example hierarchy before restructuring.

A

X = (thing) m = (objectim.

other code)

m = (some code) objectlm = (some code)

Figure 4.37: Restructured hierarchy.

Even if all RR methods cannot be removed by the reintroduction of resends,

the duplication of implementation of RR methods and the original RI methods

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING

objectl

m = (some code)

in the restructuring

n = (another)

object2

m = (resend.m.
other code)

p = (resend.n.

X = (thing)
something)

,,,

Figure 4.38: Example hierarchy before restructuring.

objectl

m = (some code)

n = (another)

m = (objectlm.
x = (thing) other code)
objectlm = (some code)
p = (object2n.
something)
object2n = (another)

Figure 4.39: Restructured hierarchy.

117

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 118

could be removed using one of the following approaches. For example, each RI
method could be implemented as the appropriate RR send for the RR method
introduced to replace any resends invoking that RI method. Then, (flattened)
objects including an RI method would need to include the corresponding RR
method, as well as those objects containing the RR send replaced by that RR
method. (For example, in Figure 4.37, object A would need to include the RR
method objectlm as it contains the RI method m, even though it does not con-
tain any methods which include a resend which would be replaced by objectlm.)
Alternatively, a resend could be replaced by delegating the resent message to the
object where the RI method is defined. This has the same effect as the resend,
but does not require the inheritance hierarchy to be structured in a particular
way, and does not duplicate the RI method. A consequence of this approach
is that objects containing such a delegated send would have to be able to refer
to the object to delegate to. This would require a uniquely named data slot to
be created for every object delegated to, and that slot included in every (flat-
tened) object which includes a corresponding delegated send. If this approach
were taken, it would still be desirable to replace introduced delegated sends by
resends in a similar way to that described in this section, thus allowing removal of
the uniquely named slots introduced to refer to the objects to delegate messages

to.

4.8 Describing the results of restructuring

The restructured system may be significantly different in structure to the original
system. Therefore, to make the restructured system easier to understand, a
description is required of the relationship of the original system to the restructured

system, and vice-versa.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 119

Preserved objects can be mapped directly to restructured objects. More so-
phisticated mappings can be constructed, for example, relating a slot in the orig-
inal system to a slot in the restructured system. The slots which were duplicated
in the original hierarchy can also be found, along with their replacements. To
relate a non-preserved object from the original system to the objects in the re-
structured system, all the slots of the original object can be related individually
to the slots which replace them, but they are likely to be split over several objects.

In the restructuring shown in Section 4.1, the system could report, for example:

e Object ol (in Figure 4.1) is replaced by object ol (in Figure 4.2)

Slot m1 in t1 and ml in t2 are both replaced by ml in t5

Slot m2 in t1 is replaced by m2 in t4

Object t2 is replaced by m1 in t5 and m3 in t6

Object t3 is replaced by t7

4.9 Limitations and problems

As previously mentioned, Guru cannot restructure reflective code. This is because
reflective code relies on the structure of the system, rather than only on its
behaviour. There appears to be no simple solution to this, except to encourage
the style of avoiding reflection in application code [Self4.0].

Restructured systems and objects may bear so little resemblance either to the
original system or to any concepts that are understood by the programmer or
designer that the restructured system will be very difficult to understand. The
inheritance hierarchy is abstracted from objects that exist in the system at the
time that the restructuring is performed. This means that abstractions are made
from what actually exists, rather than from the thoughts of the designer or pro-

grammer. This can be advantageous because the system as it exists contains

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 120

the actual implicit design. The disadvantage is that it is only a snapshot of the
design, and so may not reflect the ‘long term design’ but rather an unrepresenta-
tive version of the design due to the particular circumstances of that stage of the
development of the system. Another disadvantage is that abstractions inferred
from the system may not match recognisable real world abstractions. Chapter 6
discusses results from realistic applications of Guru, which demonstrate that the
hierarchies produced are well structured in practice.

Section 4.4.4 describes how the removal of resends can potentially alter the
behaviour of a system unless checks are made that no methods or message sends
exist in the original system which have the same names as the automatically
created RR methods. These checks are not currently implemented, but the possi-
bility of introducing an error in the ways described is insignificant in practice, and
has never been observed. The names created for RR methods are too unusual for
a human programmer to have accidentally used the same names. Implementing
the checks would be straightforward, apart from a small limitation described in
Section 4.4.4.

The user of Guru has to chose the collection of objects to restructure, and
when to perform the restructuring. The problem of extending an existing hier-
archy to include a new object (whether a traits object or not), while minimising
duplication of features or conforming to other criteria, is not addressed directly.
One way of approaching this problem is to create the new object with no in-
heritance, duplicate the features which are required, and then restructure the
hierarchy using Guru. Previous work which addresses this problem more directly

is discussed in Sections 3.8.3 and 4.11.1.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 121

4.10 Applying inheritance hierarchy restructur-
ing to other languages

The IHR described for Self could also be implemented for other object-oriented
programming languages.

In order to implement THR for class-centric programming languages, classes
rather than objects have to be considered. Classes usually define instance vari-
able structure (rather than actual instance variables) which can be shared by
inheritance!. Code within methods may access, or assign to, instance variables
which must be defined (or inherited) for instances of the class that the method
is defined in. Therefore, IHR must ensure that each inferred class which defines
methods that access, or assign to, an instance variable must also include (or
inherit) that instance variable in its definition of instance variable structure.

One of the most important considerations in implementing IHR for another
language is the definition of equality of features. For example, to implement IHR
for a statically typed language, equality of methods would have to consider equal-
ity of the type declarations of arguments, temporary variables and the method’s
return values, as well as equality of the statements within the methods.

In a class-centric language, the classes of objects which are sent messages
should be preserved. In languages in which classes are objects, this means that
metaclasses will also need to be preserved. In Smalltalk, the metaclass hierarchy
is parallel to the class hierarchy, but, using the IHR described in this chapter,
there is no reason to expect the restructured class hierarchy to be parallel to the
restructured metaclass hierarchy. Therefore, further work would be needed to
make the class and metaclass hierarchies parallel before they could be used to
replace the original hierarchies.

IHR may result in hierarchies which include multiple inheritance. Some

1Smalltalk classes may have ‘class instance variables’, but this feature is rarely used.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 122

object-oriented programming languages, notably Smalltalk, have only single in-
heritance. Hence, for such a language, a technique for implementing the equiva-

lent effect to multiple inheritance would be required.

4.11 Comparison with previous work

Note that the inheritance hierarchy structure is only one aspect of the design of an
object-oriented system, and other work ([Casais90, Casais92, Casais94, Casais95,
Chae96, Hoeck93, Opdyke92, Lieberherr88] as well as parts of [Lieberherr91])
has investigated (semi) automatic restructuring of object-oriented systems with
regard to other aspects of design. The main focus of this section will be on those

aspects which are most closely related to the work described in this chapter.

4.11.1 Casais

Casais [Casais90] describes issues and possible solutions related to the evolution
of classes. He summaries and comments on work by Johnson et al [Johnson88]
and Lieberherr [Lieberherr88]. He proposes an algorithm for restructuring hier-
archies, so that they include only ‘legitimate’ uses of inheritance. For example,
cancellation of inheritance is eliminated.

In [Casais92], Casais describes an incremental algorithm for restructuring in-
heritance hierarchies, which uncovers design flaws when new classes are added to
an existing inheritance hierarchy. An inheritance hierarchy is restructured when
a class is added which has no class from which it can inherit the features that
it requires without inheriting unwanted features, which have to be explicitly re-
jected. The algorithm removes explicitly rejected features from a hierarchy by
creating new abstract classes and moving features ‘up’ the inheritance hierarchy
into these new classes. The algorithm is not guaranteed to remove all duplication
of features, as it only examines the hierarchy local to the insertion of each class.

In [Casais92, Casais94|, Casais describes the application of two incremental

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 123

restructuring algorithms to the standard Eiffel [Meyer92] class libraries. His al-
gorithms are applied only to the interfaces of classes, and not the actual source
code of methods. Therefore, he does not discuss the problems identified in this
chapter of applying such an algorithm to real programs while ensuring preserving
their behaviour.

The first algorithm (called decomposing class interfaces in [Casais94]) sepa-
rates classes into smaller classes to make explicit different uses of inheritance.
For example, inheritance of implementation is split into a separate class from
inheritance of interface (subtyping).

The second algorithm (called factorizing object definitions in [Casais94]) aims
to correct errors in the inheritance structure of classes, such as when features
are overridden too often and when common features have not been factored into
abstract classes.

He analyses the results of applying both algorithms to Eiffel classes to demon-

strate how they can correct or identify errors in design.

4.11.2 Chae

Chae [Chae96] proposes two restructuring approaches. The first is for restructur-
ing classes to improve their cohesion, that is, splitting a class into components if
methods lack cohesion, as measured by a metric based on the instance variables
referenced by methods.

Another analysis is proposed for ensuring interface inclusion in inheritance
hierarchies, that is not allowing inheritance to omit any methods. A related
analysis ensures that overriding methods ‘behaviourally conform’ to the methods
they override; that is, they have certain similarities which suggest that they are
indeed specialisations of the methods they override, rather than just have the
same name but represent different ‘method abstractions’.

No experimental results of applying the suggested restructurings are reported.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 124

4.11.3 Hoeck

Hoeck [Hoeck93| describes a representation of object oriented programs and some
semi-automatic restructurings which can be applied to them. He further describes
a tool based on this representation which implements some of the restructurings
for Smalltalk programs. The tool identifies candidates for the restructurings,
and the user specifies which restructurings to perform; the tool then makes the
appropriate alterations to the Smalltalk program. His representation of pro-
grams is based on an extension of the class dictionary graphs of Lieberherr et
al [Lieberherr91], which he calls GEOID. In addition to some ‘primitive transfor-
mations’ similar to those presented by Opdyke [Opdyke92], he presents four more
sophisticated restructurings: split classes with little cohesion, group arguments,
remove redundancies and remove empty abstractions.

Split classes with little cohesion means splitting up a class if methods lack
cohesion, based on whether separate groups of instance variables are referenced
by distinct groups of methods. This is different in detail, but similar in intent, to
the approach taken by Chae [Chae96] mentioned in Section 4.11.2. Hoeck suggests
alternative arrangements for the restructured classes resulting from splitting up
a class.

Group arguments means that if the equivalent arguments appear together as
arguments to many methods then this indicates that a new class should be created
which groups the arguments together as single objects. Appropriate methods
must then be altered to replace occurrences of these two arguments with a single
argument of this new class.

Remove redundancies means that a variable or method occurring in more
than one class should be factored into a single variable or method to remove
the duplication. His comparison of methods does not include the case where
the methods contain equivalent code, but rather cases which indicate that they
might be equivalent. Hoeck identifies three different situations and corresponding

restructurings:

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 125

e where the variables or methods occur in classes which have a common par-
ent, which has no other children (called an ezclusive common parent) as
shown in Figure 4.40. The variable or method is simply moved to the

common parent and removed from the original classes.

e where the variables or methods occur in classes which have a common par-
ent, which does have other children (called an non-ezclusive common par-
ent) as shown in Figure 4.41. A new class is created as a subclass of the

non-exclusive common parent, for factoring the variable or method into.

e where the variables or methods occur in classes which do not have a common
parent as shown in Figure 4.42. A new class is created for sharing the

variable or method using (multiple) inheritance from the original objects.

exclusive
common

parent m1 is moved ‘up’ the

inheritance hierarchy

Figure 4.40: Exclusive common parents

Only immediate parents are considered.

Further mention of Hoeck’s ‘exclusive common parent’ restructuring is made
in Section 7.1.4, as it has some similarities with a restructuring described in
Section 7.1.

Remove empty abstractions means to remove classes which do not define any
variables or methods. This is very similar to the restructuring described in Sec-
tion 3.5.3, but is simpler because Hoeck does not consider removing transitively
unnecessary inheritance which may result in hierarchies which have multiple in-

heritance.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 126

non-exclusive
common
parent
ol 02 does not defin
non-exclusive
common
parent
ol 02

does not defin
ml

Figure 4.41: Non-exclusive common parents

No common parents
A B

ol 02
ml ml

Figure 4.42: No common parents

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 127

4.11.4 Lieberherr and the Law of Demeter

The Law of Demeter [Lieberherr88, Lieberherr89] has been proposed as a way of
decoupling classes. Informally, the Law of Demeter says that an object should
only send messages to a limited set of objects: its instance variables, the argu-
ments of methods and the receiver of the message which invoked the currently
executing method (in Self, self). This reduces the coupling between co-operating
classes. Restructuring techniques are described in [Lieberherr88] to make pro-
grams conform to the Law of Demeter. A critique of the Law of Demeter is

presented in [Sakkinen88].

4.11.5 Opdyke

Opdyke [Opdyke92, Opdyke93] presents a collection of 26 simple program restruc-
turings (he uses the word refactorings), which he shows to preserve the behaviour
of programs. Two examples of these restructurings are to rename a class, and
to move a variable to a subclass. From these simple restructurings, three more
sophisticated restructurings are defined; refactoring to generalize, refactoring to
specialize and refactoring to capture aggregations and components.

Refactoring to generalize means factoring commonalities into an abstract su-
perclass. Opdyke proposes ways of manually modifying the classes to be gener-
alised so that similarities which cannot automatically be refactored can be made
compatible. While it is not an insurmountable limitation, he only describes refac-
toring two classes into an (abstract) immediate superclass. The classes to be gen-
eralised are chosen by the user. This part of Opdyke’s work is further discussed
in Section 5.8.1 to compare it to the way that Guru has been extended to refactor
shared expressions from methods, described earlier in the same chapter.

Refactoring to specialize means splitting classes which effectively include sub-
classes encoded according to flags and conditional statements into separate classes.
Then, the flags and conditional statements can be replaced by creating objects

of the appropriate subclasses and by using polymorphism to obtain the correct

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 128

behaviour. This involves splitting each existing method which contains a relevant
conditional statement into several methods, one for each branch of the conditional
statement, as methods of the same name in the appropriate subclasses.
Refactoring to capture aggregations and components means modifying the rep-
resentation of objects and their components. For example, moving a method from
the object’s class to the component’s class. (In some circumstances this will be
similar to the restructuring advocated by the Law of Demeter [Lieberherr88]
mentioned in Section 4.11.4.) Furthermore, restructuring a relationship modelled

using inheritance into an aggregation is described.

4.11.6 The Smalltalk Refactory

The Smalltalk Refactory [Brantl] or refactoring browser implements many of the
simple refactorings proposed by Opdyke [Opdyke92]. The refactoring browser
is further discussed in Section 7.1.4, as it provides a user interface for applying

restructurings.

4.11.7 Pedersen

Pedersen’s [Pedersen89] work is not directly restructuring inheritance hierarchies,
but is mentioned here because it is an alternative approach to one of the main
problems motivating the restructuring of inheritance hierarchies. He recognises
that the conventional inheritance mechanism of object-oriented programming lan-
guages restricts how inheritance hierarchies can be extended, by only allowing
specialisations of existing classes to be created (by creating subclasses). He notes
that in many cases, it is more useful to be able to create a generalisation from
several classes (by creating a superclass for existing classes), as generalisations are
often discovered from examples. He argues that languages should include a gen-
eralisation inheritance mechanism, and shows how such a mechanism can co-exist

with the specialisation approach of the conventional inheritance mechanism.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 129

4.11.8 Zimmer

Zimmer [Zimmer95| describes manual reorganisation of object oriented programs
based on design patterns [Gamma94|. He suggests that code should be examined
to discover cases where it is similar to a design pattern, and then restructured to
make it conform to the guidelines in [Gamma94]. Also, design errors which are
addressed by the patterns in [Gamma94] should be identified and the code re-
structured to solve the design errors using the appropriate pattern. He concludes
that using design patterns is a promising approach, and could benefit from tool

support.

4.11.9 Other related work

Other work which deals with issues similar to those related to automatic restruc-
turing of hierarchies includes work on discovering abstract data types (ADTs)
[Canfora93|, and objects and classes [Canfora96, Ong93] in conventional program-
ming languages. Also relevant to (manual) program restructuring are [Gibbs90,
Anderson90, Meyer90]. Furthermore, work on program understanding and de-
sign recovery [Biggerstaff89] and restructuring [Griswold93] in conventional pro-
gramming languages has some similarities to the work described in this chapter.
However, as conventional programming languages do not have inheritance, the
similarities are limited.

As mentioned in Section 3.7, there is some similarity between automatic in-
heritance hierarchy restructuring, data mining [Holsheimer94] and conceptual
clustering [Fisher87] on small sets of data, as indicated by two papers by Mineau
et al [Mineau90, Mineau95]. However, such applications typically deal with very
large amounts of data and hence use heuristics to find approximations of optimal
hierarchies. Another area of database research which shares some similarities to
IHR is that of schema evolution, as shown by [Hiirsch93] which is co-authored by

Lieberherr [Lieberherr91], whose work is discussed in Sections 3.8.1 and 4.11.4.

CHAPTER 4. INHERITANCE HIERARCHY RESTRUCTURING 130

However, many of the important issues in schema evolution arise because of de-

tails irrelevant in non-persistent programming languages?.

4.12 Summary

Inheritance hierarchies evolve, and hence need continual, occasional restructuring
to keep them well designed. Many developers are reluctant to restructure inher-
itance hierarchies manually. This is not surprising, as restructuring inheritance
hierarchies is difficult and error prone.

Guru tackles the problem of automatically restructuring an inheritance hier-
archy, while preserving the behaviour of programs. Firstly, copies of the objects
to be restructured are created, in which the inheritance hierarchy is thrown away,
removing overridden slots and resends. Then, a replacement inheritance hierar-
chy is built which ensures no duplication of slots and a structure which reflects
the inherent structure of the objects. The replacement hierarchy can then be

used to replace the original hierarchy.

2Gelf has a limited form of persistence due to saving entire images, but does not have per-
sistence on the granularity of individual objects.

Chapter 5

Refactoring expressions from

methods

This chapter describes how Guru has been extended, from automatically restruc-
turing an inheritance hierarchy (as described in Chapter 4) to automatically refac-
toring shared expressions from methods [Moore96b| at the same time. In the re-
sulting inheritance hierarchies, none of the methods and none of the expressions
that can be factored out are duplicated.

Factoring shared methods into traits objects and shared code into methods al-
lows systems to be compact and improves consistency, making them more easily
understood and less expensive to maintain. Manually designing (and restruc-
turing) inheritance hierarchies and methods which maximise factoring is very
difficult. Even if a system is well designed initially, maintenance and evolution
will tend to cause its design to deteriorate. Many programmers are reluctant
to manually restructure a system, or refactor methods, as this can be very dif-
ficult, particularly if the system is large and has been built by many different
programmers. For large systems, no one programmer may understand the whole
system at the level of detail of individual methods. Manual restructuring and
method refactoring is also error prone and, while a system works, however badly

structured it is, the temptation is to leave it alone. Automatic restructuring of

131

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 132

inheritance hierarchies and refactoring of methods can improve the factoring of

methods into traits objects and the factoring of shared code into methods.

5.1 Introduction

Expressions can be factored out of methods by creating a new method to im-
plement the expression, and by replacing occurrences of that expression by the
appropriate message send. In this way, an expression can be shared by many
methods. The terminology used in this chapter is that expressions which are
factored out are called ‘factored expressions’ and the methods created to share
factored expressions are called ‘factoring methods’.

The behaviour of a method is determined by its sequence of message sends.
Provided the same messages are sent in the same order, the factoring of methods
and the objects where they are located do not matter. Due to message sending
polymorphism, a sequence of message sends may result in different methods being
executed for different objects. If two methods (or expressions) send the same
messages in the same order, then they can be factored out as one method (or
expression), irrespective of the original object (or methods) they occurred in.
It does not matter which methods will execute as the result of those message
sends, they will be the same irrespective of where the methods (or expressions)
are located. Due to message sending polymorphism, more factoring is possible
than in conventional languages which have only procedure or function calls. As
described in Section 2.3, in Self it does not matter whether a message send results
in an instance variable access (or assignment) or a method being executed; this
enables more refactoring than otherwise.

The following code shows a simple example of refactoring a method:

methodOne = ((x aMessage: y) something)

may be refactored as:

newMethodl = (x aMessage: y)
methodOne = (newMethodl something)

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 133

provided that the object for which the latter version of methodOne is executed
responds to the message newMethodl by executing the implementation shown
above. For the rest of this chapter this condition is assumed to be valid, and Sec-
tion 5.5 will describe how this condition is guaranteed by the refactoring system.
For conciseness, some refactorings are shown for expressions occurring only once

(as above).

5.2 The expressions which could be factored out

Not all expressions may be factored out of a method. For example, a block with
a non-local return (see Section 2.3.5) may not be factored out, because a non-
local return is from a particular method; returning from a different method does
not have the same effect. Similarly, assignments to local variables may not be
factored out.

Expressions containing references to arguments and local variables may be
factored out, provided the reference to the argument or variable is also given to

the factoring method. For example:

methodOne: argument = (| temporaryVariable |
temporaryVariable: something.
temporaryVariable result.
(argument + aMessage) * 10)

may be refactored as:

newMethod1: temporaryVariable = (temporaryVariable result)

newMethod2: argument = ((argument + aMessage) * 10)

methodOne: argument = (| temporaryVariable |
temporaryVariable: something.
newMethodl: temporaryVariable.
newMethod?2: argument)

Although references and assignments to variables appear identical to other
message sends, it is straightforward to statically determine whether a message
send is a reference or assignment to a local variable or a reference to an argument,

as explained in Section 2.3.7.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 134

In the above example, the expression temporaryVariable result is not worth fac-
toring out, as its replacement newMethodl: temporaryVariable is no improvement.
The system uses a simple metric based on the ‘size’ of an expression, measured as
the number of potential message sends (measured statically, rather than the num-
ber of actual message sends that will occur at run-time), to determine whether
to factor it out, so that cases such as this do not occur. Section 6.3 includes a
discussion of whether this metric is adequate in practice.

Passing a reference to an argument or local variable of a method to another
method does not allow the argument or local variable reference to be altered. A
message can be sent to an argument or local variable, which may change the state
of the object that it refers to (thus changing the object), but the identity of the
object referred to by an argument or local variable cannot be altered by passing
a reference to the argument or local variable to another method. For example,

consider the following code:

ml:a=(|t|
t: 1.
a: 1.
m2: t.
m2: a.

self t: 3)

m2: t = (t: 2)
The statement t: 1in method m1: makes the local variable t refer to the object
1. The statement a: 1 in method m1l: does not alter the object referred to by
argument a, but sends the message a: to self. The statement m2: t results in the
method m2: being executed, with the object t as the argument. The expression
t: 2 in method m2: does not alter the object referred to by t; rather the message
t: is sent to self with the argument 2. Similarly, for the statement m2: a. The
statement self t: 3 does not assign to the local variable t, but rather sends the

message t: 3 to self.
An expression which includes a block containing assignments to local variables

of that block may be factored out, as shown in the following example.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 135

methodOne = (| temporary |
do: []:e t|
t: e aMessage.
t something: temporary .
some other code)

can be refactored as:

newMethod1: temporary = (do: [| ce. t |
t: e aMessage.
t something: temporary |)
methodOne = (| temporary |
newMethod1: temporary.
some other code)

However, the expression t: e aMessage inside the block cannot be factored out
by itself.

A more subtle restriction is imposed by the implementation of Self used.
Blocks by themselves may not be factored out; they may only be factored out as
part of an expression. For example, the expression [a b c] value may be factored
out, but the block [a b c] by itself may not. The reason for this limitation
is that blocks which execute after their enclosing method has returned (called
non-lifo blocks) are not supported by the current implementation of Self (see
Section 2.3.5). This restriction is very minor, as the expressions inside blocks are
refactored; thus, in the example above, the expression a b ¢ may be factored out

of the block.

5.3 The expressions which are factored out

A limitation of the current implementation of Guru is that only expressions or
subexpressions which evaluate to an object are factored out. Such expressions or
subexpressions will be called complete expressions (whether they are expressions
or subexpressions). For example, in the expression a b: ¢ d (this is the same
as a b: (c d)), the expressions a, ¢, ¢ d, a b: ¢ d evaluate to an object. In

the expression a b: ¢ d, the subexpressions b: ¢, b: ¢ d, d, and a b: ¢ do not

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 136

evaluate to an object. The only expressions which are parameterised out of an
expression are references to arguments or local variables of their enclosing method
or block. For example, the expressions a b: c and a b: d can be refactored as
newMethod1: c and newMethod1: d using newMethodl: ¢ = (a b: c¢) only if c and d
are arguments of their enclosing method. This limitation means that expressions
such as a b: (xy z) and a b: (p q r) cannot be refactored as newMethodl: (x y z)
and newMethodl: (p q r) using newMethodl: ¢ = (a b: ¢).

References to arguments or local variables are passed to factoring methods as
described in the previous section. Expressions which are message sends to implicit
self, explicit self or literals, or messages sends to such expressions, to any depth,
can be factored out. Expressions which occur more than once will be factored out,
including expressions repeated in the same method, and repeated subexpressions
of the same expression. Furthermore, the system refactors expressions within
factoring methods.

An example of the method of factoring that Guru uses is that the expressions
a b cand ab dcan be factored using newMethodl = (a b), so that a b ¢ would
become newMethodl c and a b d would become newMethod1 d.

Another example, including factoring of repeated subexpressions within ex-

pressions and methods, and within factoring methods is shown below:

ml = (abc:abd)
m2 = (c: (fge:abd).
fgh)

produces the following methods!:

ml = (newMethod3 c: newMethod2)

m2 = (c: (newMethodl e: newMethod2).
newMethod1 h)

newMethodl = (f g)

newMethod2 = (newMethod3 d)

newMethod3 = (a b)

Guru can also refactor expressions such as a b ¢ and x b ¢, but only in limited

!The formatting has been improved by hand.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 137

circumstances. This is a limitation of the implementation of Guru rather than
this method of refactoring. A factoring method newMethodl: a = (a b ¢) can be
created, and the expressions a b ¢ and x b ¢ would then become newMethodl: a
and newMethodl: x respectively. The implementation of Guru only allows for
expressions to be parameterised for messages referring to arguments or local vari-
ables. Therefore, this refactoring is performed by Guru only when a and x are
references to arguments of their enclosing methods. A similar refactoring is per-
formed if the expression a b ¢ appears more than once, and a refers to a local
variable of the enclosing method(s) of the expressions, as explained in Section 5.6.

In situations such as the example above, the names of messages which repre-
sent references to arguments are ignored when comparing expressions, otherwise
the two expressions would have to be identical. As a consequence, the names of
method arguments also have to be ignored when comparing methods, otherwise
unnecessary methods could be created, for example, if both newMethodl: a = (a
b c) and newMethod2: x = (x b c¢) were created. The names of arguments are
ignored when comparing unrefactored methods, as well as factoring methods and
expressions. (A current implementation anomaly is that for comparing factoring
methods, argument names are only ignored if they were also arguments, rather
than temporary slots, of the enclosing methods of the expressions that they factor
out.)

The primary reason that Guru performs factoring in the way that it does
is so that it can perform factoring before inheritance hierarchy restructuring,
independently of the inheritance hierarchy that will result. Also the comparison of
expressions is independent of the methods that they occur in. The computational
complexity of the approach taken is relatively low. Other forms of factoring are

discussed in the following section.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 138

5.4 Alternative ways of factoring out common
code

Alternative approaches to factoring out common code, which are not implemented
by Guru, are discussed in this section.

Two other ways that the expressions a b ¢ and x b ¢ could be factored are
presented below.

If the two expressions occur in methods in different objects which have a com-
mon parent, then a factoring method newMethodl = (newMethod?2 b ¢) could be
created in the parent, and the methods newMethod2 = (a) and newMethod2 = (x)
could be created in the appropriate (child) objects. The original expressions (a b ¢
and x b ¢) could then be replaced by newMethodl in both cases. This refactoring
could result in making further refactorings possible, by making methods which

were previously different, now similar. Consider the objects in Figure 5.1.

ml={.. m2={(...
abec. xbc.

Figure 5.1: Two objects with methods sharing partial expressions

Using Guru’s refactoring approach would lead to the results shown in Fig-
ure 5.2. The alternative approach described earlier in this section would produce
the results shown in Figure 5.3.

Alternatively, the expressions could be factored out by creating factoring
method newMethodl = (b c) in the objects which may result from the mes-
sage sends a and x (or their parent objects), and replacing the expressions with
a newMethodl and x newMethodl respectively. If the message sends a and x al-
ways result in the same object, or objects with a shared parent object, then this

would be a very good solution, as shown by Figure 5.4. Furthermore, this form

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 139

ml=¢.. m2={(...
nM1: a. nM1: x.

Figure 5.2: Guru’s refactoring (ignoring implementation limitations)

nM1 = (nM2 b c)

nM2 = (a) nM2 = (x)
ml=¢.. m2={(...
nM1. nML1.

Figure 5.3: An alternative way of refactoring

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 140

of restructuring would conform to the ‘Law of Demeter’ [Lieberherr88].

‘a’ sent to the above object ‘X’ sent to the above object
results in object ‘1’ below. results in object ‘2’ below.

nM1 = (b c)

Figure 5.4: Another way of refactoring (‘Law of Demeter’ [Lieberherr88] compat-
ible)

However, determining the objects which may result from the message sends a
and x may be extremely difficult as it requires precise type inferencing [Agesen95|.
Furthermore, it may be that these message sends result in many different objects
(with many different, i.e. not shared, parent objects). If these objects were not
restructured, then the refactoring would increase the number of methods in the
system, which would be counter-productive.

There are many other ways that methods and expressions could be refactored,

in addition to the ways discussed above. Consider the following methods:

m1l = (some: (complicated: [code like this]))
m2 = (some: (complicated: [code is this]))

These two methods are similar, but it is not straightforward to factor out the

commonality.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 141

One way to do this would be:

nM1: msg = (some: (complicated: [(msg sendTo: code) this]))
ml = (nM1: 'like")
m2 = (nM1: 'is")

Or alternatively:

nM1: block = (some: (complicated: [(block value: code) this]))
ml = (nM1: [| :e | e like])
m2 = (nM1: [| :e | e is])

Code such as:

m = (| temp |

temp: set copy.
temp add: item1.
temp add: item?2.
temp add: item3.
temp add: item4.
temp add: itemb.
temp add: item6.
temp)

could be ‘refactored’? into:

m = (| temp |
temp: set copy.

6 do:[|:n|
temp add: (('item’,((n 4+ 1) printString)) sendTo: self)].
temp)

(6 do: aBlock results in aBlock being evaluated with arguments 0 to 5.) This
example is artificial and demonstrates that in some cases improving the amount

of ‘factoring’ does not necessarily lead to easily understood code.

5.4.1 Refactorings applicable to complete methods

The effect that refactoring has on complete methods rather than individual ex-
pressions is considered in this subsection.

It is possible to factor out either the similarities or the differences between

2Using the word ‘refactored’ in a general sense.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 142

methods. While these two approaches may seem to be ‘opposites’, they produce

similar, but subtly different, results. Consider the example shown in Figure 5.5.

ml=(abec. m2=(xy z.
def) def)

Figure 5.5: Example objects

If the similarities are factored out, as done by Guru, the result would be as

shown in Figure 5.6.

nM1=(def)

ml=(abc. m2=(xy z.
nM1) nM1)

Figure 5.6: Factoring similarities

If the differences are factored out, the result would be as shown in Figure 5.7.

While this does not appear to be very neat, consider what the result would be
if instead of m1 and m2, the two methods to be refactored have the same name,
for example m. The result of factoring out the differences would be as shown in
Figure 5.8.

This can be argued to be the best form of refactoring in the case where
the methods have the same name, as it reflects the idea of creating a common
abstraction of a method, and the two child objects only define the specialisations

required (that is, the differences) to use this common abstraction.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 143

nM1 = (nM2.
def)
ml = (nM1) m2 = (nM1)
nM2 = (abc) nM2 = (xy z)

Figure 5.7: Factoring differences

m = (nML1.
def)

nM1=(abc) nM1=(xy z)

Figure 5.8: Factoring differences of methods with the same name

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 144

Consider another example:

ml = (a b.
ac
ad)

m2 = (x b.

X C.
x d)
could be refactored into:
nM1:a = (a b.
ac
ad)
ml = (nM1: a)
m2 = (nM1: x)

These examples are intended to illustrate that there are many different ways
to refactor methods. Some of them are only applicable in limited circumstances.

Section 8.1 discusses the possibilities for extending Guru to refactor in different
ways. In practice, even with the limitations described, the system performs a
considerable amount of refactoring, as discussed in Section 6.3.

If many different forms of refactoring were available, then the system would
have to decide which form to use in cases where more than one form of refactoring

could be applied.

5.5 Combining method refactoring with inheri-
tance hierarchy restructuring

The refactoring of methods is performed as part of inheritance hierarchy restruc-
turing for two reasons. Firstly, all of the methods in all of the objects are refac-
tored together, which achieves the highest possible amount of method refactoring.
There is no limitation on refactoring of methods that they have to be related by
inheritance (before the refactoring stage; they will necessarily be related by in-
heritance after refactoring and inheritance hierarchy restructuring, as shown in

Figure 5.6). Secondly, the refactoring of methods can discover traits objects and

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 145

inheritance relationships which would not necessarily otherwise exist. That is,
if two objects share expressions, even if they do not share any methods, then
they will be related by inheritance in the resulting inheritance hierarchy. This is
further discussed in Section 6.3.

Restructuring a collection of objects including refactoring methods is the same
process as that described in Chapter 4, except the flattened preserved objects have
had their methods refactored using the method refactoring algorithm. The method
refactoring algorithm is applied to all the methods in all the flattened preserved
objects included in the restructuring. This algorithm is described below, using
an example.

Consider the three methods:

ml = (((size + 1) > end) ifTrue: [something])
m2 = (((start + end) > 0) ifTrue: [size: size + 1])
m3 = (size: size + 1.

((start + end) > 0) ifFalse: [error])

A dictionary is created which relates methods to all of the expressions they

contain which may be factored out by Guru.

ml — size + 1, (size + 1) > end

m2 — start + end, (start 4+ end) > 0, size + 1, size: size + 1

m3 — size + 1, size: size + 1, start + end, (start + end) > 0

For brevity, the largest expressions (((size + 1) > end) ifTrue: [something],

((start 4+ end) > 0) ifTrue: [size: size + 1] and ((start + end) > 0) ifFalse: [error])
have been omitted, and will not be shown in the rest of this example. Then
another dictionary is created which relates expressions to the methods which

contain them.

size + 1 — ml, m2, m3
(size+ 1) >end — ml

start + end — m2, m3
(start + end) >0 — m2, m3
size: size + 1 — m2, m3

From this, a dictionary is created which relates collections of methods to the

expressions which they share.

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 146

ml, m2, m3 — size +1
m1 — (size + 1) > end
m2, m3 — start + end, (start + end) > 0, size: size + 1

In order to avoid unnecessary refactoring, subexpressions of those expressions
shared by exactly the same set of methods are not factored out. Hence, in the
example above, the expression start + end is not factored out, as (start + end) > 0
is also shared by the same methods. Expressions which appear only once, such
as (size + 1) > end in the example, are not factored out. Having determined
which expressions should be factored out, a factoring method, with a unique
name, is created for each factored expression. The system needs to check that
the name of any factoring method is not used anywhere else in the system, and
that no message send could cause a factoring method to execute inappropriately,
in order to ensure that the behaviour of the system is not altered by refactoring.
The check that no other method has the same name as a factoring method is
straightforward. Section 4.4.4 explains the limitations of checking whether any
message sends exist which could execute a particular method inappropriately.

In the example above, the following methods are created:

newMethodl = (size + 1)
newMethod2 = (size: newMethod1)
newMethod3 = ((start + end) > 0)

A replacement method is made for each method which includes any factored
expressions. These replacement methods are modified such that each factored
expression is replaced by the appropriate message send to invoke the appropriate
factoring method. (This replacement is also done for factoring methods.)

The resulting methods are:

ml = ((newMethodl > end) ifTrue: [something])
m2 = (newMethod3 ifTrue: [newMethod?])
m3 = (newMethod?2.

newMethod3 ifFalse: [error])

These modified methods and the factoring methods for all of the factored ex-

pressions that they include effectively replace the original methods in the objects

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 147

to be restructured. For example, the method m1 = (((size + 1) > end) ifTrue:
[something]) is replaced by ml = ((newMethodl > end) ifTrue: [something]) and
newMethodl = (size + 1).

The flattened preserved objects, with their refactored and factoring meth-
ods, and methods which have not been refactored (because they do not contain
refactored expressions), are then restructured as described in Chapter 4. The
extended IHI algorithm is applied to these flattened objects (as described in Sec-
tion 4.5) as if there had not been any refactoring of methods. In this example,
if the three methods were in three different objects, as shown in Figure 5.9, then
they would be restructured with method refactoring into the hierarchy shown in
Figure 5.10. Note that there is no requirement for the names of the methods to
be different in order for them to be refactored; different names were used in this
section simply to make the explanation clearer. Of course, if the methods have
the same names then they must be in different objects. The methods are shown
in different objects in this example, but they could equally be in the same object
(if they have different names), in which case the method refactoring would be
unaffected, but the structure of the resulting hierarchy would be different from

the example shown.

m1 = (((size + 1) > end)
ifTrue: [something])

m2 = (((start + end) > 0) m3 = (size: size + 1.
ifTrue: [size: size + 1]) ((start + end) > 0)
ifFalse: [error])

Figure 5.9: Original objects.

As the appropriate factoring methods are included in the flattened objects
which include methods containing their factored expressions, the restructuring
ensures that the appropriate factoring methods will be in the appropriate re-
structured objects. A factoring method will be located in the object from which
all methods which included its factored expression inherit. In other words, if an

expression is factored out of methods from only one object, then the factoring

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 148

newMethod1l = (size + 1)‘

newMethod2 = (size: newMethod1)
newMethod3 = ((start + end) > 0)

m3 = (newMethod2.
newMethod3
ifFalse: [error])

m2 = (newMethod3

ml = ((newMethodl1 > end)
ifTrue: [newMethod?2])

ifTrue: [something])

Figure 5.10: Method refactoring combined with IHR.

method will be in the same object as those methods. Alternatively, if an expres-
sion is factored out of methods from several different objects, then it will be in an
object from which all those objects inherit, directly or indirectly. Therefore, the
appropriate factoring method will definitely be executed by a message send of its
name, because the names of such methods are unique, and factoring methods are
inherited by every object which includes a method which contains such a message

send.

5.6 Limitations and problems

The names of factoring methods are unique system generated names which have
no inherent meaning. These methods can be renamed by the user, and Guru will
then rename all sends of the appropriate message, but it can be difficult to invent
a short and meaningful name for many of the factoring methods.

The purpose of a factoring method may not be obvious, unless one fully un-
derstands the code. It is currently impossible for a fully automated system to
determine the purpose of a fragment of code to decide whether it is worth refac-
toring or not, and to invent a meaningful name for a factoring method.

The amount of refactoring that should be performed can be argued to be a

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 149

subjective decision. For example, in Self some programmers use the expression
x + 1, where others use the equivalent expression x succ. A possible argument for
limiting the amount of factoring is that some programmers may understand the
meaning of, for example, x + 1 more easily than x succ, and in some cases may have
to find the factoring method that will be executed in order to understand the code.
Furthermore, it may be very difficult to think of a name for a factoring method
which is understandable, and at the same time more abstract and preferably also
more compact than the original expression. For example, the expression size + 1
could be factored out as a factoring method called sizePlusOne. This is slightly
more characters to type, and is not very abstract. The ideal refactoring should
discover meaningful method abstractions from expressions, so that the system is
easier to understand, reuse and modify. An approach that may satisfy both those
who prefer as much factoring as possible and those who do not, would be for the
code to be as highly factored as possible, but for the system to allow expressions
to be shown as if they were inlined in the code, as much as each programmer
requires. To implement such a facility would, in general, require precise type
inferencing [Agesen95].

Rather than creating a new factoring method for a factored expression, Guru
could try to find an existing method which implements the factored expression.

Consider the following methods:

m = (a b c)
n=(abd)
p=(ab)

They will be refactored into:

m = (newMethod1 c)
n = (newMethod1 d)
p = (newMethod1)

newMethodl = (a b)

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 150

A better solution may be to use the existing method which defines the factored

expression a b, as shown below:

m = (p c)
n=(pd)
p=(ab)

However, due to polymorphism it is not possible to be sure that the message send
p will execute the method p shown above. An object which inherits methods m
and n may override method p, resulting in an error if methods m and n are
refactored as above. If it were possible to determine that the method p above is
executed in response to the message p by all objects inheriting methods m and n,
then this would be a good way of factoring these methods. (Note that it is only
possible to be certain that the method newMethod1 above is executed in response
to the message newMethod1 because it will be the only method of this name in the
system, and will be inherited by all objects which inherit from objects defining
the methods m and n.)

Objects will be slightly changed by the refactoring version of Guru, because
they will understand the messages implemented by the factoring methods they
inherit. Furthermore, the reintroduction of overriding described in Section 3.5.2
has been implemented to allow factoring methods to be moved higher in the
inheritance hierarchy than strictly correct. That is, the reintroduction of over-
riding allows preserved objects to inherit factoring methods even if they do not
contain any methods which include the corresponding factored expression. This
is only allowed if it is necessary for removing an anomalous traits object (see
Section 3.5.2). This can result in objects inheriting some factoring methods un-
necessarily. However, within the same limitations as discussed in Section 4.4.4,
the system can check that no message sends will cause factoring methods to be
executed inappropriately.

If an RR method includes factored expressions, and the RI method which it
replaces does not (because it is in an object not included in the restructuring),

then the reintroduction of resends (see Section 4.4.4) will fail to replace the RR

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 151

send with a resend. This is because to test whether an RR send can be replaced by
a resend involves testing whether the RR method is the same as the RI method.
If the RR method has been altered because of method refactoring, and the RI
method has not, then they will be different. Another minor implementation
problem is that RI methods included in a restructuring are always refactored if
they contain any expressions which can be factored out. This is because the RR
method created to replace an RI method is a copy of the RI method. If the RR
method is removed by reintroduction of resends, then any expressions which occur
only in the RI method will be unnecessarily factored out. (Method refactoring
which has already been done will not be ‘undone’.) This would result in more
refactoring methods than necessary, and more potential message sends, than if
those expressions were not factored out.

The reasons for the restrictions that expressions can only be parameterised
according to arguments or local variables, and that comparison of arguments does
not rely on the names of the arguments, are related to the details of the imple-
mentation of expression comparison. In particular, method arguments referred
to in expressions are equivalent if they are in the same position in each method’s
list of arguments. For example; in methods m: a = ... and n: b = ..., any implicit
self receiver message sends ‘a’ and ‘b’ inside m: and n: respectively are treated
as equivalent. While it is clearly advantageous that the names of arguments
should not matter for expression comparison, the reason for relying on the order-
ing of arguments is more subtle, and directly related to implementation concerns
rather than any theoretical concern. When comparing methods with more than
one argument, the equivalent arguments have to be compared consistently. For

example, consider the two methods (in two different objects):
m:aM:b=(acb.
ad:b)
m:xM:y=(xcy
y d: x)

(This is an artificial example, as the refactorings below would not be used as

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 152

they are no improvement over the original methods). The expressions a c¢: b and
x ¢: y can be considered equivalent, if the factoring method newMethodl: a P: b =
(a c: b) is created, and the expressions ac: b and xc:y are replaced by
newMethodl: a P: b and newMethodl: x P: y respectively. Similarly, a d: b and
y d: x can be replaced by the factoring method newMethod2: a P: b = (a d: b)
and the expressions newMethod2: a P: b and newMethod2: y P: x respectively.
However, when comparing the complete methods, it must be recognised that
they are different as the order of the arguments in the two expressions is dif-
ferent. The comparison of expressions has been implemented so that it can be
performed independently of other expressions within methods. The comparison
of methods has been implemented simply as the combined comparison of all of
their statements. The benefits of comparing methods as complete entities (also
see Section 5.4.1) rather than as a collection of separate statements is small and
not considered to justify further implementation refinements; the current imple-
mentation is sufficient to demonstrate the feasibility and results of refactoring
shared expressions from methods. A disadvantage of more sophisticated tech-
niques of comparing methods and expressions to overcome these limitation is
that they would be computationally more expensive, as more possible variations
would have to be checked to test equality of methods and expressions.

Equality of local variables depends on their names, rather than using the
ordering of local variables, as the ordering of local variables is essentially arbitrary
and would not benefit the comparison of equivalent methods or expressions.

A consequence of Guru only factoring complete expressions is that two ex-
pressions which are the same except for a small difference are not refactored.
For example, the expressions a b: (c d: e) and a b: (¢ d: f) cannot currently
be factored as newMethodl: e = (a b: (c d: e)) with the expressions becoming
newMethodl: e and newMethodl: f respectively, unless e and f are arguments of
their enclosing method, or if the expressions are the same and e (or f) refers to

a temporary variable of each of the enclosing methods. Furthermore, the largest

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 153

expressions which can be factored out are individual statements. If consecutive
statements are shared by two or more methods, the statements are factored out
as separate factoring methods, rather than as a single factoring method. This
is a minor implementation limitation as, in practice, most factoring of shared
expressions occurs for expressions smaller than or equal to a single statement.

A drawback of Guru which needs improvement is that the source code of fac-
toring methods and methods which have been modified because they included
a factored expression is generated from parse trees, ignoring the original source
code. This results in the original layout and comments being lost, and most
programmers would prefer as little disruption to their layout and comments as
possible. In the present system, the source code generated is not very well for-
matted; for example it uses too many brackets.

A possible criticism of method factoring is that it will degrade the perfor-
mance of the code by creating many small methods with consequently more (run
time) message sends. However, this is a weak argument, as sophisticated compil-
ers, such as the Self system used for this work, are able to automatically inline
code [Holzle91] so that the amount of factoring at the source level does not affect

the performance of compiled code.

5.7 Applying method refactoring to other lan-
guages

Some of the issues considered in Section 4.10 about implementing IHR for other
languages are also relevant for implementing method refactoring for other lan-
guages. For example, in order to implement method refactoring for a statically
typed object-oriented programming language, the types of arguments, temporary
variables, return values of methods as well as the types of expressions, would have
to be considered when comparing expressions.

Many of the issues addressed in this chapter are relevant for implementing

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 154

method refactoring for any other language. For example, no matter which lan-
guage is used, those expressions which may be factored out of methods need to be
identified. Having identified these expressions, the method refactoring algorithm
described in Section 5.5 can be used to determine the factoring methods to create.
The details of actually implementing this are specific to each language, and so

are beyond the scope of this thesis.

5.8 Comparison with previous work

Previous work on automatic and semi-automatic restructuring of object-oriented
systems [Lieberherr88, Pun90, Casais92, Dicky96, Godin93, Hoeck93, Moore95,
Opdyke92, Lieberherr91] has concentrated on areas other than refactoring ex-
pressions from methods; such as restructuring inheritance hierarchies considering
methods as indivisible. However, there is some previous work which is suffi-
ciently closely related to the method refactoring described in this chapter to be

mentioned here.

5.8.1 Opdyke

Factoring common code out of methods into abstract superclasses is considered
in [Opdyke92|. However, user interaction is required; in particular the user speci-
fies which (two) classes to refactor methods and common code from, to put into a
shared immediate (abstract) superclass. In comparison with [Opdyke92], rather
than refactoring methods and common code from user chosen classes into an ab-
stract superclass, the inheritance hierarchy is restructured by Guru to enable the

maximum amount of sharing of methods and expressions.

5.8.2 Other related work

Work on refactoring expressions from functions or procedures in conventional

(non object-oriented) programming languages [Griswold93, Lano93, Ward95] is

CHAPTER 5. REFACTORING EXPRESSIONS FROM METHODS 155

not entirely applicable to object-oriented languages, as conventional programming
languages lack inheritance, which affects how methods can be shared, and there is
no message sending polymorphism, which affects how methods can be refactored.

Griswold [Griswold93] and Ward (FermaT) [Ward95] describe restructuring/-
reverse engineering tools for conventional languages which can refactor common
code into procedures (as well as performing many other transformations). In
contrast to Guru, rather than the common code being identified automatically,
it is identified by the user. Both systems can make a procedure or function to
replace user identified common code, and replace occurrences of the code with a
call of that procedure or function.

Ideas related to factoring (of inheritance hierarchies and methods/procedures/-

functions) as a feature of good design are explored in [Wolff94].

5.9 Summary

Improved factoring of methods makes a system more compact, improves consis-
tency and increases code reuse. Manually refactoring methods is difficult, time
consuming and error prone. Guru automatically improves the factoring of meth-
ods, while simultaneously restructuring an inheritance hierarchy. In hierarchies
restructured with method refactoring, no methods, and none of the expressions
that can be factored out, are duplicated.

The expressions which may be factored out of each method are identified.
Then, a simple algorithm discovers new factoring methods, which are created by
the system. The system creates replacement methods, refactored using the new

factoring methods, and restructures the hierarchy as described in Chapter 4.

Chapter 6

Results

This chapter describes the results of applying Guru’s restructuring, with and
without refactoring of methods. The results are analysed in order to evaluate the

approaches taken.

6.1 Experiments

The results of applying Guru to five inheritance hierarchies are presented in this
section. The five inheritance hierarchies, which will be called the indexables, or-
deredOddballs, polygons, sendishNodes and samplers hierarchies respectively, were
restructured using Guru, both with and without refactoring of methods. Unless
stated otherwise, Guru was used automatically.

Three of the hierarchies, the indexables, orderedOddballs and polygons, were
chosen because it was expected that they would already be well designed and well
factored, and so would provide a good benchmark for evaluating the performance
of Guru. These hierarchies were designed before Guru existed (by someone other
than the author), and hence their design could not have been influenced by the
existence of Guru.

Both the indexables and orderedOddballs hierarchies, and less so the polygons,

are used extensively during the running of the Self system, as the programming

156

CHAPTER 6. RESULTS 157

environment is written in Self. Some of the objects are fundamental to the running
of nearly all Self code. In particular, vectors, byteVectors, canonicalStrings (the Self
equivalent of Symbols in Smalltalk), smalllnts, floats, true and false are extensively
used. The restructured hierarchies, with and without refactoring, were used to
replace the original hierarchies, with no change in the behaviour of the system.
While the successful replacement of such fundamental objects is not a formal
proof that the restructurings are correct, it gives substantial evidence.

The sendishNodes and samplers hierarchies were chosen because they are known
to be imperfect, and as they are part of the Guru system itself, their design has
been affected by the existence of Guru, which is what we should expect for hi-
erarchies which are developed when a system such as Guru is available in a
programming system. This point is further discussed in Section 6.3.

In the figures, restructured objects are labelled either with the name of the
object they replace, or with the name of the traits object they most closely replace.
What is meant by this is that, for example, the object labelled traits string in
Figure 6.5 does not necessarily define the same behaviour as the original object
traits string. Only the behaviour of certain objects is preserved, as explained
in Section 4.2.1, and traits string is not one of them. The label traits string
in the restructured hierarchy is used only for convenience, and reflects the fact
that this object is inherited by the equivalent objects in the original hierarchy.
Restructured objects which cannot be labelled in this way are not named. All
objects are shown with the number of non-inheritance slots they define.

Tables of simple metrics are presented. The entries labelled ‘Message sends’
refer to the total number of potential message sends in all the methods in all
the objects in the appropriate hierarchy. Notice that this is not the same as the
number of times a message will actually be sent at run-time. The table below

gives some examples to explain this metric:

CHAPTER 6. RESULTS 158

Expression -> ‘Message sends

a -> 1
self a > 1
1 > 0
ab:c > 3

Literals, explicit self and messages referring or assigning to local variables of
methods and blocks are not included. This metric is used as an indication of the
total code size of the hierarchies. Counting the number of methods, the number
of statements, or the ‘lines of code’ does not really measure the amount of code.
Such measures are misleading for large, badly factored methods or statements,
or code written in very long lines. Measuring the number of potential message
sends gives a more accurate indication of the amount of code.

The entries labelled ‘Overriding methods’ are the number of methods which
override other methods both from inside and outside the hierarchies restructured.
The hierarchies produced before using the automatic reintroduction of overriding
only include overriding of methods from outside the objects restructured. Having
too much overriding, or methods overridden too often, is an indication of poor
design [Johnson88|.

The entries labelled ‘Time(1)’ are the length of time it took to perform the ap-
propriate restructuring on a Sun Sparc 20, before reintroducing overriding. The
machine used was shared with other users which makes measuring the times less
accurate than possible, but as only CPU time was measured the times are accurate
enough for the purpose here. Times are in the format ‘hours:minutes:seconds’,
‘minutes:seconds’ or ‘seconds’ as appropriate. The entries labelled ‘Time(2)’ are
the sum of the times to perform the reintroduction of overriding and resends, and
any further reintroduction of overriding, elimination of empty objects or ‘crack-
ing’ of leaves as appropriate. These times are included to give an indication of
the performance of Guru, which is only a prototype implementation. A better

implementation should be expected to be considerably faster. In particular, the

CHAPTER 6. RESULTS 159

performance of the reintroduction of overriding is currently very poor. The ma-
chine used had 128 Mbytes of real memory (RAM), and as it was shared with
other users only part of this was available (approximately 64 Mbytes). In some
cases, the times could be considerably improved by using a machine with more
real memory. Also, the performance of Self 4.0 code is dependent upon how
often it has been run, as only code which has been executed frequently is op-
timised [Holzle94]. To reduce the effects of this feature, the restructuring and
refactoring code was executed several times before timings were measured.

The entries labelled ‘Reduction in size’ are the percentage reduction in the
number of potential message sends, which indicates the reduction in the total
amount of code in the hierarchies. In cases where some manual intervention was
needed due to limitations of the current implementation of Guru, the figures

include such alterations.

6.2 Results

6.2.1 The indexables hierarchy

This hierarchy includes strings, vectors and sequences. A very similar hierar-
chy was restructured by an early version of Guru, and the results are described
in [Moore95]. The differences between the hierarchy restructured by Guru, shown
in Figure 6.1, and the hierarchy restructured in [Moore95] are because a newer
version of the Self system has been used. Also, there are minor differences between
the hierarchy shown in Figure 6.1 and that in [Moore96b], because of minor ad-
ditions and modifications to the hierarchy during the development of Guru, since
the results in [Moore96b| were collected.

The result of restructuring without refactoring, before reintroducing resends
or overriding, is shown in Figure 6.2. This hierarchy is not exactly the same
as in [Moore95|, because of the differences in the original hierarchy. The leaf

objects are preserved (see Section 4.2.1), and also their immediate parent objects

CHAPTER 6. RESULTS 160

traits collection

Objects incluc_ied in traits indexable(30)
: the restructuring.

traits mutableindexable(17)

e N

traits traits traits
traits sending(33) byteVector(33) vector(24) sequence(39)

traits string(154) traits
/ \ sortedSequence(9) |
traits traits

iimmutableString(G) mutableString(6)

§traits canonicalString(6)

!

canonicalString mutableString byteVector vector sequence sortedSequence

Numbers shown in brackets after the object’s name are the number of methods and
data slots defined by the object.

Figure 6.1: The original indexables hierarchy.

should be preserved because they should be expected to have other children,
which would not be included in the restructuring (see Section 4.3). However,
traits sequence and traits sortedSequence did not have any children other than the
prototype objects in the image restructured. In order to make the restructuring as
it should be expected to be, copies of sequence and sortedSequence were made, and
consequently traits sequence and traits sortedSequence had children not included
in the restructuring, and hence were identified as preserved objects.

This initially appears badly structured. However, close inspection reveals that
a small number of slots have caused the creation of 7 small traits objects. These
small traits objects represent anomalies in the structure of the hierarchy caused
by the lack of overriding in the hierarchy. Using the automatic reintroduction
of overriding described in Section 3.5.2, and automatically removing 7 methods
created to replace resends as described in Section 4.7, the hierarchy is transformed

into the one shown in Figure 6.3. (The reintroduction of overriding was applied

CHAPTER 6. RESULTS 161

traits collection

R S ‘

traits mutablelndexable(38)

- <3)/ 1
. \
/ R \ / (3)
traits string(182) (1) 4 Q) (36)
traits traits traits traits traits traits
canonicalString mutableString byteVector vector sequence sortedSequence
(16) (10) ®) (21) @) (10

I T O N

canonicalString mutableString byteVector vector sequence sortedSequence

©) ©) ©) ©)) ®)

Figure 6.2: The restructured indexables hierarchy, before reintroducing overriding.

CHAPTER 6. RESULTS 162

both before and after the reintroduction of resends, as this allowed one more

traits object to be removed than otherwise).

traits collection

traits mutablelndexable(45)

(26)
traits
A sequence
traits string(182) (2) (39)
traits traits traits traits traits
canonicalString mutableString byteVector vector sortedSequence
(14) (10) ©) (21) ©)

| | | |

canonicalString mutableString byteVector vector sequence sortedSequence

©) ©) ©) ©) ™ ®)

Figure 6.3: The restructured indexables hierarchy, after reintroducing overriding.

The single method defined in the object labelled ‘A’ was not moved to the ob-
ject labelled ‘traits mutablelndexable’ because of the check whether all replacement
offspring can implement all the messages sent to self in the method to be moved.
Having manually moved this method, the (now) empty object ‘A’ was automati-
cally removed (see Section 3.5.3). First, the parent slots of the children of ‘A’ are
changed to refer to ‘traits mutablelndexable’, as shown in Figure 6.4. Then, the
transitively unnecessary inheritance is removed, resulting in the hierarchy shown
in Figure 6.5.

Guru without automatic reintroduction of overriding ensures that no object
will inherit from the Self equivalent of a concrete class, which is a widely ac-

cepted design guideline [Johnson88|. The automatic reintroduction of overriding

CHAPTER 6. RESULTS

traits collection

traits mutablelndexable(46)

(26)
traits
sequence
traits string(182) (39)
traits traits traits traits traits
canonicalString mutableString byteVector vector sortedSequence
(14) (10) ©) (21) ©)

| | | |

canonicalString mutableString byteVector vector sequence sortedSequence

©) ©) ©) ©) ™ ®)

Figure 6.4: The restructured indexables hierarchy, after removing ‘A’.

traits collection

traits mutablelndexable(46)

N

(26) traits traits
\ vector(21) sequence(39)

traits
traits string(182) byteVector(5) traits

/ \ sortedSequence(9)

| traits traits
i canonicalString(14) mutableString(10)

canonicalString mutableString byteVector vector sequence sortedSequence

Figure 6.5: The final restructured indexables hierarchy.

163

CHAPTER 6. RESULTS 164

has resulted in the replacement for traits sortedSequence inheriting from the re-
placement for traits sequence. If it is required that objects do not inherit from
the Self equivalent of concrete classes, then this could be ensured by a minor
modification to the automatic reintroduction of overriding.

The original hierarchy was then restructured with refactoring, producing the

hierarchy shown in Figure 6.6, before reintroduction of overriding or resends.

traits collection

@
traits string(216) (1) Q) (61)
traits traits traits traits traits traits
canonicalString mutableString byteVector vector sequence sortedSequence
17) (10) ®) (21) ®3) (10)

I T T A

canonicalString mutableString byteVector vector sequence sortedSequence

©) ©) ©) ©)) ®)

Figure 6.6: The restructured and refactored indexables hierarchy, before reintro-
ducing overriding.

The hierarchy produced after reintroducing overriding and resends, (and then
reintroducing overriding again) without any manual alterations is that shown in
Figure 6.7.

It is interesting to observe that the hierarchy of Figure 6.7 is slightly different
to the one produced by the restructuring without refactoring. An additional traits
object has been discovered (labelled ‘X’) because of the factoring methods intro-

duced. Furthermore, this additional traits object is very easy to understand; it is

CHAPTER 6. RESULTS 165

traits collection

traits mutablelndexable(57)

X (6)
\ traits
(26) traits sequence(64)
\ vector(21) |
traits |
traits string(216) byteVector(5) traits !
/ \ sortedSequence(9)
traits traits

. canonicalString(17) mutableString(10)

canonicalString mutableString byteVector vector sequence sortedSequence

Figure 6.7: The restructured and refactored indexables hierarchy after reintroduc-
ing overriding.

the shared behaviour of vector-like objects, as opposed to sequence-like objects.
The following table gives some simple metrics concerning the refactoring and

restructuring results.

Origina | Restructured | Restructured with
method refactoring

Objects 17 15 16

Methods 322 317 396

Message sends(1) 2167 2194 2072

Message sends(2) 2167 2154 2041

Overriding methods | 86 72 69

Reduction in size - 0.6% 5.8%

Time(1) - 13:28 30:43

Time(2) - 5:46 6:53

The entry labelled ‘Message sends(1)’ includes a minor failing of the automatic
reintroduction of resends, and consequent elimination of methods which have been

introduced to replace the behaviour of the resend. In the restructuring without

CHAPTER 6. RESULTS 166

refactoring, the system was not able to remove one of these introduced methods,
which unfortunately was a very large method. In the restructuring including
refactoring, the system failed to remove the same very large method, and two
smaller methods. It is important to stress that these minor imperfections do not
affect the behaviour of the system, but can occasionally result in the existence of
methods which can be removed with some minor modifications to other methods.
The entry labelled ‘Message sends(2)’ is the result after manually performing the
appropriate modifications, which requires a very small amount of programmer
effort.

A small problem with replacing the original objects with the restructured
ones was that, because vector, byteVector, mutableString and canonicalString have
different sorts of mirrors than normal objects (see Section 2.3.7), only their traits
objects were actually modified. This has exactly the same effect as if these objects
are modified, as they each have only one slot defining inheritance from their traits

object. This point is further mentioned in Section 4.6.

6.2.2 The orderedOddballs hierarchy

This hierarchy includes the numbers and boolean traits objects. Although Guru
was initially intended to restructure hierarchies including concrete objects, it can
equally be used when given only traits objects, as in this case. The preserved
objects are correctly identified as the leaf objects of the hierarchy to be restruc-
tured; it does not matter that these objects are not leaf objects of the Self system
as a whole. Only traits objects have been used, because number objects cannot
be modified; furthermore, nothing would have been gained by including number
objects in the restructuring as they define only one slot for inheritance. Also,
in practice it would not be possible to include all the number objects in the Self
image in a restructuring.

The original hierarchy is shown in Figure 6.8. The results of restructuring

with and without refactoring, and before reintroducing overriding or resends, are

CHAPTER 6. RESULTS 167

both shown in Figure 6.9. Note that in this example, the hierarchies with and
without refactoring have the same structure and so are shown together. The first
numbers refer to the restructuring without refactoring, and the second numbers

include method refactoring.

mixins oddball Iobby mixins ordered

. Objects included
. Inthe restructuring traits orderedOddbaII(O*)

traits number(6l)

-

traits integer(61)

L\

traits bigInt(78) traits smallint(59) traits float(62) true(9) false(9)

tralts boolean(5)

* traits orderedOddball defines only inheritance and does not include any methods.

Figure 6.8: The original orderedOddballs hierarchy.

The results, with and without method refactoring, after reintroducing over-
riding and resends, are shown in Figure 6.10.

In the hierarchies (with and without refactoring) which do not include rein-
troduction of overriding, a traits object has been created (labelled traits ordere-
dOddball) which appears not to define any slots. However, figures are labelled
only with the number of non-parent slots, and traits orderedOddball defines only
parent slots. The IHI algorithm does not create traits objects which define no
features, and parent slots are not normally included as ‘features’ (see Section 4.4).
However, the three parent slots defined by traits orderedOddball refer to parent
objects outside the object to be restructured and so were included as ‘features’
(see Section 4.4). Therefore traits orderedOddball simply exists to share those

three parent slots. In this example, the creation of this object is fortunate, as if

CHAPTER 6. RESULTS 168

mixins oddball lobby mixins ordered

— S

traits orderedOddbaII(O/O)

tralts number(65/68) (1/1) (1/1)

tralts |nteger(63/68) (2/3) traits boolean(4/4)

A

traits b|g|nt(69/82) traits smalllnt(50/50) tralts float(52/57) true(8/8) false(8/8)‘

Figure 6.9: The restructured orderedOddballs hierarchy, with and without refac-
toring, before reintroduction of overriding.

mixins oddball Iobby mixins ordered

traits orderedOddbaII(2/2)

tralts number(67/7l) \

traits |nteger(63/68) tralts bo oI ean(4/4)

/N

itraits bigInt(69/82) traits smalllnt(50/50) traits float(51/56) true(8/8) false(8/8):

Figure 6.10: The restructured orderedOddballs hierarchy, with and without refac-
toring, after reintroduction of overriding.

CHAPTER 6. RESULTS 169

it did not exist then the reintroduction of overriding would not be able to remove
the two objects below it that define only one slot.

Notice that there is no difference in the structure of the final hierarchies (with
and without refactoring) and the original hierarchy, only in the details of where
methods are located and how they are factored. This is not generally true of
hierarchies restructured using Guru, but in this case the hierarchy can be assumed
to have been well designed initially, as such hierarchies are well understood, and
it is a small hierarchy, in terms of the number of objects.

An example of the detailed difference between the hierarchy restructured with-
out refactoring and the original is that there were several methods which had been
defined identically in traits biglnt, traits smalllnt and traits float, for which in the
restructured inheritance hierarchy a single implementation has been put in the
equivalent of traits number.

In the hierarchy restructured with refactoring there are more detailed differ-
ences. For example, in the equivalent of traits number, one expression was factored
out from 14 methods, and shared between them using a factoring method. Some
methods in the replacement for traits float had the same implementation but
different names, and so their code was shared using factoring methods.

The following table provides some simple metrics about the original hierarchy,

and the restructured hierarchies with and without refactoring.

Original Restructured | Restructured with
method refactoring
Objects 9 9 9
Methods 324 302 329
Message sends 1528 1491 1449
Overriding methods | 35 29 29
Reductionin size - 2.4% 5.2%
Time(1) - 2:59 6:09
Time(2) - 1:25 1:19

CHAPTER 6. RESULTS 170

6.2.3 The polygons hierarchy

The objects in the polygons hierarchy shown in Figure 6.11 are morphs used in
the standard user interface and in a tool called the structure editor. The user
interface representation of objects, called outliners, use expanderMorphs as toggles
to display or hide slots. The user’s hand is represented by a handMorph. In the
figures, the following abbreviations are used: asRLPM for abstractSyntax rectiLin-
earPolygonMorph, asESFM for abstractSyntax structureEditorFrameMorph and EM
for expanderMorph.

traits morph

. objects included in
. the restructuring traits
polygonMorph(29)
traits
asRLPM(73)
traits traits traits
asESFM(91) handMorph(45) EM(16)

asESFM(71) asRLPM(61) polygonMorph(27) handMorph(41) EM(33)

Figure 6.11: The original polygons hierarchy.

The results of restructuring, before and after reintroducing overriding and
resends, are shown in Figures 6.12 and 6.13 respectively. The preserved objects
were specified manually as only the leaf objects of the hierarchy.

The reintroduction of overriding failed to remove two objects, labelled A and
B, so two slots were manually moved to object C, resulting in the hierarchy
shown in Figure 6.14. This was then ‘cracked’ (see Section 4.3.3), producing the
hierarchy of Figure 6.15.

Then it was discovered that 5 RR methods (see Section 4.4.4) had not been

CHAPTER 6. RESULTS 171

traits morph

() 1)

(2/2{ \1) (7)
Pt \/A

(69) 1) (1)

NN

asESFM(166) asRLPM(64) polygonMorph(28) handMorph(86) EM(50)

Figure 6.12: The restructured polygons hierarchy, before reintroduction of over-
riding.

traits morph

LSNP

asESFM(164) asRLPM(64) polygonMorph(28) handMorph(86) EM(50)

Figure 6.13: The restructured polygons hierarchy, after reintroduction of overrid-
ing.

CHAPTER 6. RESULTS 172

traits morph

/\

(69) (8)

N T T

asESFM(164) asRLPM(64) polygonMorph(28) handMorph(86) EM(50)

,,,

Figure 6.14: The restructured polygons hierarchy, including manual alteration.

traits morph

/Za\
(69) (8)\
traits traits traits traits traits

asESFM(92) asRLPM(4) polygonMorph(2) handMorph(44) EM(18)

asESFM(72) asRLPM(60) polygonMorph(26) handMorph(42) EM(32)

Figure 6.15: The restructured polygons hierarchy, with leaves ‘cracked’.

CHAPTER 6. RESULTS 173

removed by the reintroduction of resends (see Section 4.7), so these were removed
manually, including a small amount of alteration to other methods which included
corresponding RR sends.

The manual alteration included moving 2 slots to a parent object. The reason
for the problem with removing RR methods, and the corresponding alteration, is
indicative of a general problem with the way that resends are handled. Consider
the hierarchy shown in Figure 6.16. Hierarchies similar to this can easily result
from automatic restructuring. The manually alterated hierarchy in Figure 6.17
shows a better way of structuring the hierarchy. This alteration could be imple-
mented automatically, but there may be better solutions which involve keeping

track of which methods include RR sends, as discussed in Section 8.1.

m = (objectlm) m = (some code)
objectlm = (some code)

Figure 6.16: Hierarchy including RR method which cannot currently be removed
automatically.

The results of applying restructuring with refactoring to the polygons hierarchy
of Figure 6.11, before and after reintroducing overriding and resends, are shown
in Figures 6.18 and 6.19 respectively.

Manually moving one slot because of the conservative nature of the reintro-

duction of overriding results in Figure 6.20. ‘Cracking’ the leaves of the hierarchy,

CHAPTER 6. RESULTS 174

m = (some code)

m = (resend.m)

Figure 6.17: Hierarchy of Figure 6.16 after manual alteration.

traits morph

asESFM(206) asRLPM(64) polygonMorph(28) handMorph(98) EM(51)

Figure 6.18: The restructured and refactored polygons hierarchy, before reintro-
duction of overriding.

CHAPTER 6. RESULTS 175

traits morph

TN N

asESFM(205) asRLPM(64) polygonMorph(28) handMorph(98) EM(51)

(38)

]

(6) (4)

/

(6 9)

(183) (1)

Figure 6.19: The restructured and refactored polygons hierarchy, after reintro-
duction of overriding.

and automatically creating 22 disambiguating methods to resolve introduced am-
biguities (see Section 4.3.1), the hierarchy becomes that of Figure 6.21. In this
case, the hierarchy is not very understandable, and more manual alterations would
be needed to create a better hierarchy. If the slots in B, C and D are moved to
A, then the structure (but not the number of slots defined in each object) would
be the same as in Figure 6.15, which would be a large improvement.

The following table presents simple metrics for the original polygons hierarchy,

and the hierarchies resulting from restructuring with and without refactoring.

Original | Restructured | Restructured with
method refactoring
Objects 10 13 16
Methods 236 240 465
Message sends(1) 3894 3972 3610
Message sends(2) 3894 3893 3577
Overriding methods | 75 68 90
Reduction in size - 0.02% 8.1%
Time(1) - 6:02 1:28:24
Time(2) - 8:14 11:18

CHAPTER 6. RESULTS 176

traits morph

(78)
/(6) (4)
(7 9)

asESFM(205) asRLPM(64) polygonMorph(28) handMorph(98) EM(51)

Figure 6.20: The restructured and refactored polygons hierarchy, after manually
moving one slot.

traits morph

A (38)
B (6) c (4)
/
D (10)
(183) \
tralts tralts traits traits traits

asESFM(133) asRLPM(4) polygonMorph(11) handMorph(61) EM(24)

asESFM(72) asRLPM(60) polygonMorph(26) handMorph(42) EM(32)

Figure 6.21: The restructured and refactored polygons hierarchy, after ‘cracking’.

CHAPTER 6. RESULTS 177

The restructuring with refactoring took so long due to insufficient real memory
in the machine used.
In this example, the amount of method refactoring is very high because many

methods were much larger than usual for Self code.

6.2.4 The sendishNodes hierarchy

This hierarchy is part of the parse tree nodes hierarchy used in the implementation
of Guru.

The original hierarchy is shown in Figure 6.22, the restructured hierarchy
without refactoring and before reintroduction of overriding or resends is shown
in Figure 6.23. The preserved objects were identified as the leaf objects and their
immediate parents. The restructured hierarchy after reintroduction of overriding

and resends is shown in Figure 6.24.

traits parseTreeNode

Objects included in the restructuring
| traits sendishNode(13)

P

traits resendNode(10)

N

| traits traits traits traits
§directedResendNode(7) undirectedResendNode(7) implicitSendNode(39) sendNode(14)

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(16)

Figure 6.22: The original sendishNodes hierarchy.

The results including method refactoring are shown in Figures 6.25 and 6.26.
The reintroduction of overriding failed to remove the object labelled ‘X’, because

of being too conservative. Manually moving the two slots in this object to traits

CHAPTER 6. RESULTS 178

traits parseTreeNode

traits resendNode(8)

N /T

| traits traits traits traits
. directedResendNode(6) undirectedResendNode(6) implicitSendNode(35) sendNode(12)

| | | |

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(18)

Figure 6.23: The restructured sendishNodes hierarchy, before reintroduction of
overriding.

traits parseTreeNode

traits sendishNode(10)

traits resendNode(8) \\

| traits traits traits traits
§directedResendNode(6) undirectedResendNode(6) implicitSendNode(35) sendNode(12)

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(17)

Figure 6.24: The restructured sendishNodes hierarchy, without refactoring of
methods but with reintroduction of overriding and resends.

CHAPTER 6. RESULTS 179

sendishNode, and automatically removing the resulting empty object, produced

the hierarchy shown in Figure 6.27.
traits parseTreeNode

traits resendNode(11)

N /T

| traits traits traits traits
. directedResendNode(6) undirectedResendNode(6) implicitSendNode(40) sendNode(13)

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(18)

Figure 6.25: The restructured and refactored sendishNodes hierarchy, before rein-
troduction of overriding.

The restructured hierarchies are similar to the original hierarchy, with the dif-
ference in structure due to the discovery of a new traits object. This traits object
can easily be understood as the shared behaviour of all parse tree nodes which
represent expressions that have self as the implicit receiver (including resends).

The following table provides some simple metrics about the original hierarchy,

and the hierarchy restructured with and without refactoring.

Original Restructured | Restructured with
method refactoring

Objects 10 11 11

Methods 80 75 96

Message sends 440 434 380

Overriding methods | 41 33 33

Reductionin size - 1.4% 13.6%

Time(1) - 1.57 1:50

Time(2) - 6:02 3:06

CHAPTER 6. RESULTS 180

traits parseTreeNode

traits sendishNode(19)

(7)/ x0

traits resendNK \

| traits traits traits traits
. directedResendNode(6) undirectedResendNode(6) implicitSendNode(40) sendNode(13)

| |

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(18)

Figure 6.26: The restructured and refactored sendishNodes hierarchy, after rein-
troduction of overriding.

traits parseTreeNode

traits sendishNode(21)

traits resendNode(11) \

| traits traits traits traits
§directedResendNode(6) undirectedResendNode(6) implicitSendNode(40) sendNode(13)

directedResendNode(10) undirectedResendNode(8) implicitSendNode(8) sendNode(18)

Figure 6.27: The restructured and refactored sendishNodes hierarchy, after man-
ually moving two slots.

CHAPTER 6. RESULTS 181

6.2.5 The samplers hierarchy

This hierarchy, shown in Figure 6.28, contains the prototypes of the different anal-
ysis button morphs described in Section 7.1.2. The following abbreviations are used
in the figures: MSLM for mirrorSamplerListMorph, MSM for mirrorSamplerMorph,
SM for samplerMorph, GM for getterMorph and MGM for mirrorGetterMorph. This
hierarchy contains relatively few methods, but each prototype contains a large
number of assignable slots. In this example, the preserved objects were manually

specified as the leaves of the hierarchy.

traits coreSampIerMorph

objects included in the (10)

| restructuring

(15)\
traits traits traits traits traits

| MSLM (3) SM (1) MSM (2) GM (2) MGM (2)
MSLM (43) SM (43) MSM (43) GM (51) MGM (51)

Figure 6.28: The original samplers hierarchy.

The results of restructuring with and without method refactoring, before rein-
troduction of overriding or resends, are shown in Figure 6.29. After reintroduction
of overriding and resends, both with and without refactoring, the hierarchy be-
comes that shown in Figure 6.30. In these figures, the structure of the hierarchies
is the same with and without refactoring, so these hierarchies are shown together.
The first number refers to the result without method refactoring, and the second
number includes refactoring.

‘Cracking’ the leaf objects (see Section 4.3.3) results in the hierarchy of Fig-
ure 6.31.

CHAPTER 6. RESULTS 182

traits coreSamplerMorph

(1/1) (15/15)
MSLM (46/46) SM (44/44) MSM (45/45) GM (53/53) MGM (53/53)

Figure 6.29: The restructured samplers hierarchy, before reintroduction of over-
riding.

traits coreSampIerMorph

(6/11)

S

| MSLM (46/46) ~ SM (44/44) MSM (45/45) GM (53/53) MGM (53/53)

Figure 6.30: The restructured samplers hierarchy, after reintroduction of overrid-
ing.

CHAPTER 6. RESULTS 183

In this example, there is very little method refactoring, because there are few

methods, and the methods are small.

traits coreSamplerMorph

e o

(6/11)

SN e

traits traits traits traits traits
MSLM (4/4) SM (2/2) MSM (3/3) GM (3/3) MGM (3/3)
MSLM (42/42) SM (42/42) MSM (42/42) GM (50/50) MGM (50/50)

Figure 6.31: The restructured samplers hierarchy, after ‘cracking’ of leaves.

The following table is for the original samplers hierarchy, and the restructured

hierarchies after ‘cracking’ of leaves.

Original | Restructured | Restructured with
method refactoring

Objects 12 13 13

Methods 35 34 39

Message sends 172 165 150

Overriding methods | 31 26 26

Reduction in size - 4.1% 12.8%

Time(2) - 33 55

Time(2) - 56 50

6.3 Analysis of results

The most important feature of the results is that the structure of the inheritance
hierarchies produced by Guru are exactly as expected for well designed hierar-

chies, in all except one case (polygons with method refactoring). It is important

CHAPTER 6. RESULTS 184

to remember that Guru does not use the structure of the original hierarchies to
guide the creation of the restructured inheritance hierarchies. The hierarchies
produced are based only on maximising sharing and minimising duplication of
the features (mostly methods) of objects. Any other hierarchies which defined the
same features for their objects, however badly structured, would have produced
the same results from Guru. It should be noted that Guru will produce inheri-
tance hierarchies with multiple inheritance when necessary; for all except one of
the restructurings, single inheritance was sufficient to ensure no duplication of
methods or factored expressions.

The results show the effectiveness of the reintroduction of overriding described
in Section 3.5.2 at improving the structure of inferred inheritance hierarchies.
Similarly, these results are evidence that at least a small amount of overriding is
desirable for producing good inheritance hierarchy structures. Notwithstanding,
the amount of overriding has been reduced compared to the original hierarchies.
Note that it is the reintroduction of overriding which has caused the removal of
nearly all occurrences of multiple inheritance.

It is interesting that method refactoring has not had more effect on the struc-
ture of the inheritance hierarchies produced. Partly, this is because of the ef-
fectiveness of the automatic reintroduction of overriding in removing very small
traits objects; it must also be due to the details of the hierarchies restructured.
While the approach taken maximises the amount of factoring of methods (within
the limitations of Guru), the benefit of inferring new traits objects from factoring
methods would appear, on the evidence presented, to be of minor importance.

A more detailed feature of the hierarchies restructured with refactoring was
that a high proportion of method refactoring was found to be inside individual
restructured objects, with relatively few factoring methods sharing expressions
amongst methods of more than one object. The explanation for this, given that
refactoring of methods is performed before the final restructured hierarchy is

created, must be due to the fact that methods that will be restructured into in a

CHAPTER 6. RESULTS 185

single object will tend to have more similarities between them than methods in
different objects.

The restructuring with method refactoring of the polygons hierarchy revealed
a limitation of the current implementation. In resulting hierarchies, refactoring
methods can sometimes be effectively duplicated, differing only in the names of
arguments, because of the treatment of equality of local (non argument) slots of
methods. If the two expressions, t1 b: ¢ and t2 b: ¢ are both repeated, where
tl and t2 both refer to local slots (not arguments) of their enclosing method,
then two factoring methods will be created; newMethodl: t1 = (t1 b: ¢) and
newMethod2: t2 = (t2 b: c¢). Note that this also means that expressions which
should be replaced by factoring methods will not be replaced in the equivalent
circumstances. For example, if the expression tl b: c is repeated, but the expres-
sion t2 b: c is not repeated, then a factoring method for t1 b: ¢ will be created,
and occurrences of that expression replaced by the appropriate send to execute
the factoring method. However, the expression t2 b: ¢ will not be replaced in the
same way, because the equality test for local (non argument) slots of methods
relies on equality of name, which is more restrictive than necessary in many cases.
Fortunately, such circumstances occur very infrequently in these examples, and do not have
a large affect on the results of the experiments. In the case where t1 and t2 are both
arguments of their enclosing methods, and are both in the same position in the
list of arguments, there is no duplication.

The largest difference between the original and restructured hierarchies is in
the details of the location and factoring of methods. The restructured and refac-
tored hierarchies are an improvement compared to the original hierarchies. In
terms of simple objective measures, the reduction in the number of potential
message sends in the restructured and refactored hierarchies indicates that the
total amount of code has been reduced, and an improvement in code reuse has

been achieved. The ‘reduction in size’ metric is smaller for the hierarchies which

CHAPTER 6. RESULTS 186

were expected to be well designed, and so it may be useful as a quality met-
ric. The total ‘reduction in size’ figures for all the example hierarchies are; 0.8%
reduction without refactoring and 7.4% reduction with refactoring. Therefore,
method refactoring considerably improves the results, as measured by the ‘reduc-
tion in size’ metric. Furthermore, as no methods or factored expressions are now
duplicated, but are defined only once, the restructured and refactored hierarchies
are more consistent than the original hierarchies.

The results in this chapter show that, despite the limitations described in
Section 5.3, the system performs a considerable amount of refactoring. In the
case of the indexables hierarchy, 77 expressions were factored out, and in the
polygons hierarchy, over 200 expressions were factored out. There is scope for
improvement, particularly in allowing for more refactoring to be possible, while
only performing refactoring which is desirable.

One of the problems of automatic refactoring is that it can be difficult to un-
derstand the meaning of some of the methods automatically created. To give an
indication of the sort of expressions which were factored out from the orderedOd-
dballs, indexables and polygons hierarchies, a selection of some of the factoring
methods, and one method which was modified to use a factoring method, are
shown below (including too many brackets, this is one of the features which

could be improved, as mentioned in Section 8.1):

newMethod651P: a P: res = (res sign: (sign * (a sign)))
newMethod627 = (-1 = sign)

newMethod659P: d = ((d size) - cByteSize)
mostSignificantDigit: d = (in d At: (newMethod659P: d))

newMethod636P: digit = ((digit asByte) - ("0’ asByte))

newMethod661 = (size + 1)
newMethod695 = (size: (newMethod661))

newMethod1644 = (nextPos: (((newMethod1495) - borderwidth) @
(newMethod1497)))

newMethod1495 = (xList at: urlnx)

newMethod1497 = (yList at: urlnx)

CHAPTER 6. RESULTS 187

newMethod1466 = (labelMorph copy)
newMethod1577P: vpl P: vp2 = ((vpl < 0) && [vp2 > 0]) ||
[(vpl > 0) && [vp2 < 0]]))

newMethod1467P: p P: p1 P: pb = ((pb - p) crossProduct: (p1 - p))
newMethod1468P: p P: pa P: pn = ((pa - p) crossProduct: (pn - p))

The last two methods, newMethod1467P:P:P: and newMethod1468P:P:P:, give
an example where different ordering of arguments makes a difference to the
meaning of two otherwise similar methods. A possibly better way of refac-

toring these methods, which has not been implemented, would be to define

newMethod1468P:P:P: as:
newMethod1468P: p P: pa P: pn = (newMethod1467P: p P: pn P: pa)

The metric used by Guru to decide whether to factor out an expression is
based simply on the ‘size’ of the expression, measured as the number of potential
message sends (measured statically, rather than the number of actual message
sends that will occur at run-time), not including references to arguments or local
variables. The minimum ‘size’ of expression that will be factored out has been
chosen as the smallest that ensures that replacement expressions will be smaller
than the expressions they factor out (in terms of number of potential message
sends); hence the total number of potential message sends will be reduced by
refactoring. Detailed analysis of the results of refactoring several hierarchies
indicates that this metric is not ideal, as many expressions are factored out which
have no easily understood meaning as method abstractions. A metric which could
be used, that may give a better indication of which expressions to factor out,
could be the number of times an expression occurs. Currently, any expression
which occurs more than once is factored out, but it may be better to factor out
certain expressions, for example the smallest possible expressions, only if they
occur frequently.

In the sendishNodes hierarchy, some methods were written in a particular way
in order to maximise their possibility of refactoring. In particular, consistency

between methods in the order of expressions, in cases where the ordering does

CHAPTER 6. RESULTS 188

not matter for the meaning of the expression, enabled some subexpressions to be

factored out which would not have otherwise been possible.

6.4 Summary

This chapter has presented the results of applying Guru to realistic examples.
These results show that the inheritance hierarchy structures produced are those
expected of well designed hierarchies. Furthermore, the refactoring of shared ex-
pressions from methods has improved the amount of code reuse, while having no
negative effect on the inheritance hierarchies produced (in all except one exam-
ple). The behaviour of programs has been shown to be preserved by replacing
objects fundamental to the correct running of the Self programming environment
with their restructured equivalents (with and without refactoring of methods),

with no change in the behaviour of the Self system.

Chapter 7

Complementary Tools

This chapter describes tools which are useful in addition to the hierarchy restruc-
turing and method refactoring described in Chapters 4 and 5.

Restructuring tools will only be useful if they are easy to use. Section 7.1
describes three different approaches to user interaction with restructuring tools.
A user interface has been developed for using the restructurings described in
Chapters 4 and 5, as well as for other simpler restructurings which require different
user interaction. Furthermore, simple static analyses are also considered because,
even if the inheritance hierarchy structure and the factoring of methods in a
system are satisfactory, a programmer may want to know about aspects of a
system without actually altering the system, for example, to evaluate the results
of a restructuring, to assist in program understanding, or to help in manual
restructuring.

A system may be well structured, but nevertheless include code which is
not necessary for a particular application. Section 7.2 describes an approach
to removing code which is unnecessary for an application, that is, separating

application programs from the rest of the Self programming environment.

189

CHAPTER 7. COMPLEMENTARY TOOLS 190

7.1 User interaction with restructuring and anal-
ysis tools

This section describes three alternative approaches to using restructuring and
analysis tools in the Self programming environment. The approaches can be
applied to similar programming environments for other languages. Each approach
is suitable for different restructurings and analyses; similarly, each restructuring
or analysis may be most suited to a particular approach to user interaction, or
may be suitable for more than one approach.

The three approaches are:

e Having as little user interaction as possible.

e Requiring the user to specify the restructurings and analyses to perform,

and the objects on which to perform them.

e Integrating restructuring and analyses into the programming environment,

so that the system becomes proactive rather than reacting to user requests.

The analyses and restructurings considered are described below. The ap-
proaches to integrating these into the programming environment could be applied
to other sorts of analyses and restructurings; those described are not considered
to be comprehensive.

The analyses implemented were:

‘not sent’ Whether the name of a slot is ever sent as a message. A slot which

is ‘not sent’ may be unnecessary.

‘not fully implemented’ Whether all of the messages potentially sent in a
method have at least one implementor. The presence of such potential
message sends may indicate that the method contains an error, is obsolete,

or that there is at least one method missing.

CHAPTER 7. COMPLEMENTARY TOOLS 191

‘overrides’ Whether the slot overrides an inherited slot. This information is

provided by some browsers for languages other than Self.

‘overrides unnecessarily’ Whether the slot overrides an inherited slot with the

same definition.

‘ambiguous’ Messages which are ambiguous for an object. That is, messages
which when sent to an object would result in an ‘ambiguous selector’ run-

time error.

‘place holders’ The automatic identification of ‘place holder’ methods, using

the algorithm described in Section 4.4.2.

The use of type inferencing [Agesen95] would allow more sophisticated analy-
ses to be possible, for example, checking for slots containing message sends which
are not implemented for the type of receiver determined.

Some simple metrics were also implemented, but are not described here as
the study of metrics is an extensively researched area, and descriptions of metrics
and their uses are presented in [Chidamber94, Méller93]. Simple metrics such as
the number of slots in an object, the number of statements in a method, and the
average number of statements in methods in an object are all straightforward to
determine. Some simple metrics were used in Chapter 6 to evaluate the results
of the restructuring and refactoring performed by Guru.

The restructurings implemented were:

e The inheritance hierarchy restructuring with and without refactoring of

expressions from methods, as described in Chapters 4 and 5.
e Removal of ‘overrides unnecessarily’ slots.

e Moving slots which have the same definition to a common parent object.
This is called the ‘moving same sibling slots’ restructuring, and is described

in the following subsection.

CHAPTER 7. COMPLEMENTARY TOOLS 192

e Splitting an object into its assignable slots and a separate object for its non-
assignable slots. This is called ‘cracking’, and is described in Section 4.3.3
for use on the leaf objects of restructured hierarchies, but can also usefully

be applied to many other objects.

The ‘moving same sibling slots’ restructuring

This restructuring removes slots which have the same definition and which also
share a common parent. It is similar to the restructuring described in Section 3.5.1
for reintroducing overriding, but has subtle and important differences. Rather
than moving a slot higher in the inheritance hierarchy in order to reflect a ‘de-
fault’ implementation of a slot which is to be overridden by ‘non-standard’ im-
plementations of the slot, the ‘moving same sibling slots’ restructuring removes
duplicated slots. This is achieved by moving slots which are defined the same in
objects which share a common parent into that common parent, and removing
those duplicated slots.

Figure 7.1 shows an example of this restructuring. The ‘moving same sibling
slots” restructuring results in one of the (equivalent) implementations of m in
A, B or C being moved to E (and being removed from the other two). The
restructuring described in Section 3.5.1 would have moved the implementation of
m in D into E, as this is the ‘default’ implementation; it results in no decrease in
the duplication of slots.

In the current implementation of the ‘moving same sibling slots’ restructur-
ing, only hierarchies two levels deep are considered. Deeper hierarchies could be
considered, but in practice most of the benefit of this restructuring is to be found
in hierarchies one or two levels deep, and further depth makes the restructuring

too slow without removing substantially more slots.

CHAPTER 7. COMPLEMENTARY TOOLS 193

I

The implementations of m in objects A, B and C are the same
as each other, but different to the implementation in D.

Figure 7.1: The most duplicated implementation is to be overridden by the less
duplicated implementation(s).

7.1.1 Using as little programmer interaction as possible

Rather than using a programmer’s time in specifying which restructurings and
analyses to perform, and which objects to perform them on, one approach is
to have the system perform certain restructurings and analyses with the mini-
mal programmer involvement. For example, the analyses can be applied to any
collection of slots or objects, such as all the objects and slots in a module (see
Section 2.3.2), or all the objects and slots in the system.

The application of restructurings with minimal programmer interaction has
limitations. In order to apply a restructuring without any programmer involve-
ment, for example on an entire Self image, the restructuring must perform exactly
the sort of restructuring that a programmer will accept as an improvement, and
must not produce any unexpected results. Such restructurings are therefore sim-
ple and will have limited benefits. Of the restructurings proposed earlier, only
removal of ‘overrides unnecessarily’ and ‘moving same sibling slots’ can safely
be applied without user interaction. In fact, these restructurings are so ‘safe’
in terms of result and programmer understanding that they could be applied

automatically ‘behind the scenes’ without even being requested.

CHAPTER 7. COMPLEMENTARY TOOLS 194

More sophisticated and potentially beneficial restructurings, such as those
described in Chapters 4 and 5, cannot safely be applied without programmer in-
teraction, that is they cannot be applied globally or on all the objects in a mod-
ule, as the results cannot be guaranteed to be understandable to a programmer.
Therefore, the restructurings of Chapters 4 and 5 require the user to manually
specify which objects to include in a restructuring. Furthermore, such restructur-
ings may take too long to be feasible to apply on very large numbers of objects.
Even applying the much simpler ‘overrides unnecessarily’ and ‘moving same sib-
ling slots’ restructurings on an entire Self image took several hours on a Sparc
2.

The analyses which identify potentially unnecessary slots, and the ‘overrides
unnecessarily’ and ‘moving same sibling slots’ restructurings, were applied to all
the objects and slots in the standard Self system; the results are presented below.
(The ‘moving same sibling slots’ figure refers to the number of slots removed by

this restructuring.)

Proportion of dotsin the system identified by the analysis

13.5% Not sent

1.0% Not fully implemented

0.3% Not sent and not fully implemented
0.4% Overrides unnecessarily

0.65% moving same sibling slots

Only slots which are ‘well known’ (see Section 2.3.2) were considered.

It might be assumed that ‘not sent’ slots can be safely removed as being
unnecessary. However, it is impossible to determine all the messages sent in a
Self system, because of computed selectors (see Section 2.3.7). Furthermore, ‘not
sent’ slots may be necessary if they are used reflectively, rather than through
message sends; for example, _Mirror understands: 'aMessage’ (see Section 2.3.4).
Even if the ‘not sent’ slots could be determined accurately, many slots exist
which are not currently necessary, but are useful for future reuse and so should

not be removed. Therefore, identifying ‘not sent’ slots as potentially removable

CHAPTER 7. COMPLEMENTARY TOOLS 195

has limited value.

Similarly, ‘not fully implemented’ slots cannot safely be removed as, rather
than being obsolete, they may simply contain an error which should be corrected.
Furthermore, it is quite possible for a method to contain code which is never
executed; messages which have no implementor will not cause an error if they are
never sent.

Methods which are both ‘not fully implemented’ and ‘not sent’ are better
candidates for removal, but even these cannot be safely removed automatically,
and user interaction is needed.

The removal of ‘overrides unnecessarily’ slots and ‘moving same sibling slots’
both provide only a very small improvement. Nevertheless, the number of such
slots is larger than had been expected.

Two slots were identified which would have caused an ambiguity if the relevant
message had been sent. One of these slots was commented as ‘should probably
be thrown away’. The percentage of all slots that this represents is insignificant,
so this analysis does not appear to be of much value in general.

None of these very simple restructurings are sophisticated enough to have
a large impact on program quality, so for better results more user involvement
is needed. The following section describes a user interface for providing such
user interaction for supporting more sophisticated restructurings, such as those

described in Chapters 4 and 5 on user chosen collections of objects.

7.1.2 Programmer driven interaction

The Self user interface is based on direct visual representation and manipulation
of objects [Smith95]. Although the user interface is simple and elegant for most
programming requirements, certain simple tasks are not well supported.

For example, in order to find the results of the analyses described above for
a particular object, the programmer needs to send a message to the reflective

representation of that object (called its ‘mirror’; see Section 2.3.4). In order to

CHAPTER 7. COMPLEMENTARY TOOLS 196

send a message to an object, an evaluator can be opened for the object, and a
message sent by typing the message into the evaluator and pressing the ‘Evaluate’
button. The object resulting from the message sent to that object is then attached
to the user’s hand. Similarly, a message can be sent to an object’s mirror either
by opening an evaluator on the mirror object, or using an evaluator on the object
and sending a message to the object which will result in the object’s mirror, such
as the -Mirror primitive.

For example, consider finding the slots for an object which override inherited
slots. An evaluator can be opened on the object, and the expression ‘_Mirror
overrides’ evaluated. The resulting object will be a set of names of the slots which
override inherited slots. In the standard Self image, to examine the contents of
a set is not very convenient; the easiest way is to evaluate the message ‘asVector’
for the set object. This vector can be ‘opened’, giving direct access to all the
objects contained in the set.

In order to provide a user interface for the simple restructurings and analyses
described earlier, and for the restructurings described in Chapters 4 and 5, analysis
button morphs were created. They provide a fast and convenient way to access
the results of message sends to objects or their mirror objects. These morphs are
parameterised by a message to send to the object (or its mirror) onto which they
are dropped or moved. This message will be called the request and the object
sent the message will be called the target. In contrast to the buttons provided
in the standard Self user interface, the target of analysis buttons is the object
that the button is over, rather than a specific object set using the middle button
menu (or in the code of a method). Also, those analysis buttons which display
their result (rather than return an object to the user) are not pressed in order
to display their result; rather, they display their result whenever they are placed

over a target object.

CHAPTER 7. COMPLEMENTARY TOOLS 197

The following types of analysis button morphs have been implemented:

sampler displays the printString of the object resulting from sending the request
to the target object.

getter attaches the object resulting from sending the request to the target object

to the user’s hand.

mirrorSampler the same as sampler, except the request is sent to the mirror of the

target object.

mirrorGetter the same as getter, except the request is sent to the mirror of the

target object.

mirrorSamplerList displays the printStrings of the objects in the collection result-

ing from sending the request to the mirror of the target object.

A samplerList analysis button morph (the same as mirrorSamplerList except send-
ing the request to the object rather than its mirror) was not implemented as it
was not found to be needed.

Figures 7.2, 7.3, 7.4 and 7.5 show a selection of these analysis button morphs.

ba set(18 elements)
numberOfSlots

15
h—"’"““a mirror sampler
Eenluate — size
Wallla 1500155 13-___"‘—\—____\”___‘

a sampler

Figure 7.2: sampler analysis button morphs.

The analyses and the simpler of the restructurings described earlier can be

used through analysis button morphs.

CHAPTER 7. COMPLEMENTARY TOOLS 198

ba list(18 elements)

get ..
last a getter

Evaluate Disciiss
pressing this button attaches
the result of sending ‘last’
to ‘a list’ to the user’s hand

Figure 7.3: getter analysis button morph.

4 traits sortedSequence

Bodule: sorted3equence a mirrorSamplerList
parent* TGS Sequence = for ‘overrides’
indexForlnserting: el .. B
prototype sovtediequence B
unsafe At ki elems gz srart + (& - firstfey poarrides
unsafe st k Put: v . addAll:
Acdding ad:
add: el _eollectionMName
addAll: els .. B
A pirinting
collectionMName zortediequence ' =
breplacing
| S=o

Figure 7.4: mirrorSamplerList analysis button morph.

CHAPTER 7. COMPLEMENTARY TOOLS 199

ka list(18 elements)
get ...

thisClone

Esmluate Disroiss

pressing this button attaches the
result of sending ‘thisClone’ to
the mirror of ‘a list’ to the user’s
hand (‘thisClone’ is implemented
as the ‘Clone’ primative)

Figure 7.5: mirrorGetter analysis button morph.

If the target does not understand the request then, in the case of sampler
morphs, text to indicate that the request is not understood is displayed. Simi-
larly, in the case when a getter morph is dropped onto a target which does not
understand the request, the string object indicating that the request is not un-
derstood is attached to the user’s hand.

New sampler and getter morphs can be created using a creator morph, which
is parameterised by the request message of the sampler or getter morph to be
created. When a creator morph is pressed, the appropriate new sampler or getter
morph is attached to the user’s hand.

A special getter morph, called a collectionGetter, has been constructed for
fetching objects out of collections. It allows the objects in a collection to be
brought onto the screen, one at a time, without actually removing them from
the collection. It is more sophisticated than other getter morphs in that each
collectionGetter contains a collection of the objects that it has already fetched
from a collection, so that it fetches all of the objects out of a collection without
fetching the same element more than once. Figures 7.6 and 7.7 show how a

collectionGetter morph is used and created. (The safeGetKeys button returns

CHAPTER 7. COMPLEMENTARY TOOLS 200

a collection containing the keys of the target, which useful if the target is a

dictionary.)

pressing this button attaches the result

of sending ‘safeGetKevs’ to
ba list(22 elements) ‘a list’ to the user’s hand

Collection Gatting

Esaluate
safeGetKeys
this is the nextReflected ————
size of ‘a list’ hext pressing this button
33 attaches the reflectee

of the next element in
‘a list’ to the vser’s hand

pressing this button attaches the next
element in ‘a list’ to the vser’s hand

Figure 7.6: User interface for inspecting collections.

Using the restructuring and refactoring described in Chapters 4 and 5 is also
inconvenient using the standard Self user interface. In particular, in order to
specify the objects to restructure, the user must create a suitable empty collection,
and then add each object individually using an evaluator. In order to refer to
some objects in an evaluator, long strings of text are often necessary. To provide
a user interface for the restructuring and refactoring described in Chapters 4
and 5 another morph based on analysis button morphs, called an ihr collector, was
constructed for specifying the objects to be included in a restructuring. An ihr
collector is created and attached to the user’s ‘hand’ by clicking on a ihr collector
creator morph. The ihr collector is then dropped on an object to add that object to

the collection of objects to be restructured. The ihr collector can then be ‘picked

CHAPTER 7. COMPLEMENTARY TOOLS 201

Collection Getting

[~ pressing this button attaches
a new ‘collectionGetter’ to
the user’s hand

Collection” Getting
safe GetKeys

nextReflecteo
hext

Figure 7.7: User interface for creating collectionGetters.

up’ by the user’s ‘hand’ and moved over all the objects to be included in the
restructuring. Figures 7.8 and 7.9 illustrate this part of the user interface.

To perform the ‘standard’ restructurings (Chapters 4 and 5, with or without
refactoring of methods) is very straightforward. Having specified the objects to be
included in the restructuring, the button labelled ‘ihr’ is pressed, and the object
representing the collection of objects resulting from the restructuring is attached
to the user’s ‘hand’. Restructurings can be performed in stages, with buttons for
performing part of the restructuring (with or without refactoring), and then for
reintroducing overriding (Section 3.5), removing empty objects and transitively
unnecessary inheritance (Section 3.5.3), reintroducing resends (Section 4.7), and
cracking leaf objects (Section 4.3.3). Other ‘non-standard’ restructurings can be
performed by pressing the button labelled ‘self’ to attach the object representing
the collection of objects gathered by the ihr collector to the user’s ‘hand’. The
relevant messages can be sent to this collection of objects using an ‘evaluator’, as
shown in Figure 7.10.

In order to relate the original objects to the restructured objects, the collec-

tion of restructured objects can be sent messages (using the evaluator) of the

CHAPTER 7. COMPLEMENTARY TOOLS 202

pressing this button performs the ‘standard’ IHR
and attaches the result

(a collection of mirrors)

to the vser's hand

~ »ohject C

collection of 3 ohjects - adding OID

R

self

8
i;}]jfuﬁt A “E?j;?t B pressing this
adnle: adnle:
parent” o object parent” o object |0 1 S0

bintemal details b intemnad detoils the collection

of mirrors in this
‘thr collector’ to
the user’s hand

this is the ohject identity
mumber of ‘object C’

Figure 7.8: User interface to specify objects to be restructured.

CHAPTER 7. COMPLEMENTARY TOOLS 203

collection of 0 objects - adding OID:

pressing this button attaches a new
‘ithr collector® to the user’s hand

collection of 0 objects - adding OID:
self

IHR

Figure 7.9: User interface to create new ‘ihr collector’.

form replacementFor: anObject, where anObject is the original object, as shown
in Figure 7.10. The result of this message send is the appropriate replacement
object (if the original object was a preserved object). A more sophisticated user
interface for relating the original objects to restructured objects has not been
found to be necessary.

Alternatively, objects can be brought out of a collection (that is, they can be
brought into the Self world and are not removed from the collection) using the

‘next reflectee’ button of a collectionGetter, as described earlier.

7.1.3 Programming environment driven interaction

Rather than explicitly requesting certain analysis information or restructurings,
the programming environment can be modified to provide certain information,
and suggest restructurings, in an unobtrusive way without it being explicitly
requested.

The slots of an object outliner can be coloured according to whether they
satisfy certain of the simple analyses described earlier. For example, a slot which
overrides an inherited slot can be coloured orange, and if it overrides the slot

unnecessarily, that is with the same definition as the inherited slot, it can be

CHAPTER 7. COMPLEMENTARY TOOLS 204

collection of 3 objects - adding OID:
IHR

SElf\

pressing this button attaches the
collection of ohject mirrors
representing the restructured
ohjects to the user’s hand

pressing this button attaches the ba dictionaryOfReflections
collection of ohject mirrors replacementFor: objectA
representing the objects in the

restructuring to the user’s hand

\E'-.'alu::te Diiscoiss
ka reflectionCollection replacements for original
special THR ohjects can he found by

sending the appropriate
message to this collection

Esmluate Disriiss l]]]jEEt
non-standard versions of the [HR

can he performed by sending the
appropriate message to this

collection ohject

Figure 7.10: User interface for inspecting results of IHR.

CHAPTER 7. COMPLEMENTARY TOOLS 205

coloured red. Similarly, other analysis can be indicated using different colours.
This idea is an extension of the way that ‘copied-down’ slots (see Section 2.3) are
indicated.

Similarly, when methods are added to a system, an interactive restructuring
system could perform various checks on the code to be added. It could then
suggest restructurings to the user, and perform them if required.

Unfortunately, while this would be an unobtrusive way of displaying simple
analysis information, and performing appropriate restructurings, it is intrusive to
the performance of the Self user interface. To perform even the simplest analysis
or restructuring is currently too slow for an interactive environment. Further-
more, to display many different analyses using different colours, the colours have
to be chosen carefully so that they are sufficiently easy to distinguish from each
other, and a key has to be provided to explain the meaning of different colours
to novice users.

The sophisticated programming environments of Self and Smalltalk allow pro-
grammers to incrementally modify a system, without having a long ‘edit-compile-
link-run’ cycle. Using an incremental restructuring algorithm, such as [Dicky96],
would seem to complement Self’s programming environment. Unfortunately, in-
cremental restructuring is not currently practical, because it would significantly
affect the responsiveness of such environments, which is one of their most im-
portant features. Given more computational power, such an approach may be
feasible. Nevertheless, if an interactive system only checks code when it is mod-
ified or added to a system, then it will not check legacy code. Also, it can be
confusing to a user to do radical rearrangements to a system while it is being
used. Large scale restructuring should only be done in response to an explicit
request from a programmer. Further discussion of the incremental restructuring

algorithm described in [Dicky96] can be found in Section 3.8.3.

CHAPTER 7. COMPLEMENTARY TOOLS 206

7.1.4 Comparison with previous work

The ParcPlace-Digitalk Smalltalk [ParcPlace] programming environment contains
a check for messages not implemented when a method is added or modified. It
uses a string comparison algorithm to suggest a correction, based on the messages
which are implemented in the system. It is implemented in such a way that the
interactive performance of the system is not significantly affected. ParcPlace also
provides a browser which indicates which methods are inherited and which are
overridden.

The Refactoring Browser [Brantl] provides simple user directed low-level re-
structurings for Smalltalk. An associated tool, called SmallLint [Brant2], checks
for some common Smalltalk coding errors. The restructurings are limited and
not as sophisticated as those described in Chapters 4 and 5.

ENVY/QA [ENVY/QA] is a commercial product for analysis of Smalltalk
programs. It gathers metrics, discovers potential coding errors, provides a ‘code
coverage tool’ (see Section 7.2.2), a tool for automatically producing documenta-
tion for applications and a source formatting tool.

One of the restructurings described by Hoeck [Hoeck93], called the ‘Remove
redundancies’ restructuring with ‘exclusive common parents’ (see Section 4.11.3)
is similar to the ‘moving same sibling slots’ restructuring described in Section 7.1.
Hoeck’s restructuring will be called ‘ecp’, and the ‘moving same sibling slots’
restructuring will be called ‘mss’. The ecp considers only immediate parents of
classes, whereas the mss considers two level hierarchies. Furthermore, the ecp
only considers moving methods if they are the equivalent in all of the children
of the common parent class, whereas the mss only requires that all the children
understand the message implemented by the method. Hence, the mss includes

ecp as well as allowing other cases which the ecp does not.

CHAPTER 7. COMPLEMENTARY TOOLS 207

7.2 Removing unnecessary code

One of the advantages of prototyping systems, such as Self and Smalltalk, com-
pared to more conventional systems, is that they allow programmers to rapidly
build and modify programs, and to experiment with different implementations
and designs. This is particularly useful for evolving a prototype system to dis-
cover a user’s requirements if they are not initially well understood, and when
developing systems for new and unusual applications. However, a consequence
of prototyping is that often old versions of implementations and designs remain
in a system. Even if a system is perfectly structured, a particular application
may use only a small proportion of the entire system. Therefore, a system for
extracting an application program from a system could be necessary, even if a

perfect restructuring system existed.

7.2.1 Dynamic Analysis Stripper

In order to remove slots which are unnecessary for an application program, previ-
ous work [Agesen94, Moore94| has used static analysis to predict which methods
will be needed. While this approach can be very successful in many cases, for
languages such as Self there are some problems caused by the dynamic nature of
the language. In particular, it is impossible to predict which slots are necessary
when computed selector names are used (see Section 2.3).

An alternative approach has been investigated, by implementing a tool for
dynamic analysis of a program to determine which slots are necessary. Similar
analysis is performed by ‘code coverage’ tools for determining whether test suites
fully ‘exercise’ an application.

In the dynamic analysis stripper, the slots to be considered for inclusion in the
delivered application are modified so that they notify a monitoring object when
they are accessed. Note that although all slots could be considered, in most cases

only those slots which will be needed in addition to slots which will already exist

CHAPTER 7. COMPLEMENTARY TOOLS 208

in a standard system should be considered.

The slots needed by an application are then identified by running the applica-
tion so that all slots in the application are accessed. While this cannot easily be
guaranteed, a dynamic analysis stripper can be left collecting this data for many
test runs of an application with minimal affect on its performance, so if left for
long enough and run on a sufficient number of test cases it can accurately identify
which slots are needed for the application.

Once the slots used by an application have been identified, they can be moved
into a module and ‘filed-out’ (see Section 2.3.2).

In contrast to work which uses static analysis, it is impossible for a dynamic
analysis stripper to identify more slots than are needed. However, it is possible
for it to fail to identify all necessary slots, because of incomplete exercising of
an application, which is a more dangerous failing. However, it does identify slots
which are necessary because of computed selectors. Furthermore, it does not
require a ‘main’ program or expression to be specified from which to start a
static analysis.

Unfortunately, even the dynamic analysis stripper fails to identify slots referred
to using only reflection, for example ‘_Mirror understands: 'aMessage’’ (see Sec-
tion 2.3.4). Also parent slots are not identified, because they exist for inheritance
without being directly accessed. Many of the necessary parent slots can be iden-
tified automatically by looking for any parent slots referring to an object which
includes any of the identified slots.

An additional use of a dynamic analysis stripper is that it can be used for
profiling.

The dynamic analysis stripper was used for delivering (and profiling) Guru. As
Guru was developed experimentally, considerable code was written which exists
only for testing Guru, and different strategies have been implemented and evalu-
ated for solving the same problems. The necessary code for the released version

of Guru [Guru], identified by the dynamic analysis stripper, was less than half of

CHAPTER 7. COMPLEMENTARY TOOLS 209

the code written.

7.2.2 Comparison with previous work

Agesen [Agesen94, Agesen96] describes using static type inference to extract ap-
plication programs from the Self programming environment. He reports results
of using his application extractor on several example applications. His technique
requires the programmer to specify a message send which starts the application
to be extracted (similar to a ‘main’ function in the language ‘C’). His type in-
ference system determines which slots in the system are accessible starting from
this message send. Then those slots identified are extracted and made into an
executable file. Agesen’s extractor can be used automatically in most circum-
stances, and preserves the behaviour of extracted programs. However, he admits
that his extractor has some limitations, in particular it cannot automatically
handle computed selectors or reflective code.

ENVY/QA [ENVY/QA] provides a code coverage tool, the intended use of
which is to check that test suites of programs/data fully use all the methods in
an application. If methods are not executed as a result of running a set of test
programs/data then this indicates that the test suite is not comprehensive, and
hence needs additional tests.

In [Moore94] the author describes a static analysis tool for Smalltalk, called
ProgramFinder, which aims to determine which methods are required for an ap-
plication. This tool was integrated into a system for translating Smalltalk into
CLOS [Keene89] in order to produce stand-alone executables for Smalltalk ap-
plications. The aim of the ProgramFinder was to reduce the size of translated
applications. The ProgramFinder requires a method to be specified as the start-
ing method of the application to be extracted. From this, a transitive closure of
all the methods implementing all the message sends in the starting method, and
all the methods implementing all the message sends in those methods etc. is cal-

culated. This is very conservative; it does not use any type inferencing to reduce

CHAPTER 7. COMPLEMENTARY TOOLS 210

the number of implementors considered for each message send and so identifies
more methods than necessary. A simple mechanism of being able to specify that
only certain classes should be considered for implementing any message send was
included. The ProgramFinder was found to be useful, but much less accurate than
a system such as Agesen’s [Agesen94, Agesen96].

ParcPlace-Digitalk Smalltalk [ParcPlace] includes a tool called the ‘Stripper’
which is used to extract an application from the Smalltalk development environ-
ment. The Stripper eliminates certain classes specific to program development,
such as the compiler classes, without any analysis as to whether they are needed,

but rather due to built-in assumptions.

7.3 Summary

This chapter has described tools which provide program analyses and restruc-
turings, useful both in combination with and separate from the restructurings
described in Chapters 4 and 5. The way that a user can interact with such tools
is considered, and restructurings which require different forms of interaction (than
those of Chapters 4 and 5) are described. Furthermore, user interface tools for
making the restructurings described in Chapters 4 and 5 easy to use are described.

The tools described include ones for removing unnecessary slots from a Self
system. Those slots identified as unnecessary include slots which override an
equivalent slot, slots which have equivalent definitions in ‘sibling’ objects, and
slots which are not executed for a particular application. These slots can be
identified independently of the restructurings described in Chapters 4 and 5,

providing a collection of complementary tools for program improvement.

Chapter 8

Conclusions

This thesis has shown that automatic restructuring and refactoring can improve
the inheritance hierarchy structure and method factoring of realistic examples.

Hierarchies created by Guru have exactly the structures that should be ex-
pected of good designs, and eliminate duplication of methods. The refactoring of
methods improves hierarchies even further by eliminating duplication of the ex-
pressions which it factors out. The hierarchies produced by Guru do not depend
upon the structure of the original inheritance hierarchies. Guru will produce the
same inheritance hierarchies for any inheritance hierarchies which define the same
methods for the preserved objects.

Eliminating duplication of methods and factored expressions reduces the total
amount of code (measured as the number of potential message sends), improves
consistency and increases code reuse. Further work is required to increase the
amount of refactoring possible, and to produce more easily understood factoring
methods.

Guru allows programmers to concentrate on ensuring that objects define the
correct methods, while leaving the inheritance hierarchy, and factoring methods,

to be created automatically.

211

CHAPTER 8. CONCLUSIONS 212

8.1 Critique and suggestions for further work

The extended IHI algorithm described in Chapter 3 appears to produce well de-
signed hierarchies. However, while the IHI algorithm without overriding produces
hierarchies satisfying well justified criteria, the reintroduction of overriding is a
less formally justified addition to the algorithm. Rather than introducing over-
riding into the hierarchies produced by the IHI algorithm, it would be possible
to define a set of criteria which includes overriding. This may then lead to an
algorithm which infers better hierarchies (which include overriding) than those
created by the extended IHI algorithm.

Guru handles only two aspects of the design of object oriented programs:
inheritance hierarchy structure and method factoring. There are many other
aspects which Guru does not address, and so Guru cannot be claimed to be
the only useful sort of restructuring tool. Guru should be used in conjunction
with other restructuring tools for best results. In particular, the traits objects
discovered by Guru may be too large and lack cohesion, because Guru aims to
include shared slots in as few traits objects as possible.

A possible criticism of the approach taken in this work is that basing inher-
itance hierarchies only on code rather than on the underlying meaning of the
code, or on abstractions defined by humans and based on domain knowledge,
does not lead to good hierarchies or methods. However, the results presented in
Section 6 show that the hierarchies produced do have the structures expected of
well designed hierarchies. Thus, basing the design of hierarchies on maximising
code sharing does appear to lead to well designed hierarchies. However, although
Guru can be used fully automatically, it cannot replace a programmer’s under-
standing of the underlying meaning of code, and so some user involvement should
be expected in designing, and restructuring, hierarchies. As the system uses only
details of code in the system, rather than knowledge of the problem domain, the
hierarchies and refactoring created by Guru reflect what actually erists in a sys-

tem, which may not be the same as what should erist in a system. Similarly,

CHAPTER 8. CONCLUSIONS 213

only a programmer can make informed guesses about the likely future changes
and reuse of a system.

Whether Guru should work fully automatically, and then the user modify
its results if required, or should be made to work semi-automatically is a more
difficult question for which there is no definitive answer. In this thesis, fully
automatic restructuring was investigated as it is easier to add user interaction
to an automatic system than to make a semi-automatic system fully automatic.
Also, an automatic system which produces good results is more valuable than a
similar semi-automatic system. Furthermore, there has been much less previous
research in fully automatic restructuring.

Some object-oriented programmers believe that inheritance hierarchies should
be used to define type hierarchies and should not just be used for code sharing.
This view is particularly popular amongst advocates of statically typed languages.
However, this then leaves the question of what types (abstractions) should be.
Abstractions can be view as either intensional or extensional. The intensional
view is that an abstraction is the shared properties of a set of objects. The
extensional view is that an abstraction is a set of objects with some shared prop-
erties. In nearly all object-oriented programming languages, whether statically
or dynamically typed, classes are intensional as they define the methods shared
by their instances. Guru is compatible with the intensional view, with the shared
properties being discovered automatically.

The existence of a tool such as Guru can influence the way that code is written.
There is possibly a counter-productive psychological consequence of the existence
of a system such as Guru, that programmers may become lazy about creating
good code and inheritance hierarchies, because they believe that the system will
‘tidy everything up’ for them.

While the reintroduction of overriding described in Section 3.5.2 improves the

structure of inheritance hierarchies, the current implementation is not entirely

CHAPTER 8. CONCLUSIONS 214

reliable, due to complications in avoiding the introduction of ambiguities as ex-
plained in Section 3.5.1. Also, the reintroduction of overriding does not check
whether methods contain resends, which it should in order to check whether the
method can safely be moved, as mentioned in Section 3.5.1.

The implementation of the removal of methods introduced to replace resends,
described in Section 4.7 contains an error described in Section 6.2.1.

Section 6.2.3 includes a description of a situation in which the reintroduction
of overriding can positively affect the reintroduction of resends. If an RI method
is moved higher in the inheritance hierarchy by the reintroduction of overriding,
then, in some circumstances, this can allow more RR methods to be removed by
reintroduction of resends.

In general, the way that resends are handled could be improved. Rather
than removing resends by converting them into message sends to invoke uniquely
named methods, and then trying to reintroduce resends in order to remove those
uniquely named methods, an alternative approach could convert resends into a
reference to the method that will be executed. Then, the effect of resends on
testing equality of methods (see Section 4.4.1) could still be handled correctly,
and these references could be used to modify the reintroduction of overriding so
that it moves RI methods such that resends can be reintroduced to invoke the
correct methods.

The speed of Guru for restructuring including refactoring of large systems is
poor in the current implementation. Restructuring including refactoring of the
indexables hierarchy took just over half an hour on a Sun Sparc 20!. This is
mostly because of details of the current implementation of Guru, but partly due
to the fact that all methods in a restructuring are refactored together. While
this approach ensures the maximum amount of refactoring is possible, it is com-

putationally expensive. One way of reducing the computational expense would

In a previous implementation [Moore95], restructuring the indexables hierarchy without
refactoring methods took less than one minute on a Sun Sparc 5. However, this implementation
contained some simplifications which could cause it to fail in some circumstances.

CHAPTER 8. CONCLUSIONS 215

be to restructure a hierarchy without refactoring, and then perform refactoring
on subgraphs of the restructured hierarchy. This approach would not achieve
the maximum amount of factoring possible, and would not discover any new
classes or inheritance relationships in performing the refactoring. The results
discussed in Section 6.3 suggest that if the time taken to refactor a large system
were important then the loss of these benefits might be a reasonable compromise.
However, the limit on the size of hierarchy which can reasonably be restructured
including refactoring may be reached before the limit imposed by computational
considerations. For example, if the original hierarchy is too large or complex for
a programmer to understand, then the programmer will not be able to determine
whether the restructured hierarchy is an improvement. Furthermore, if the re-
sults of restructuring are too complex to be understood by a programmer, then
they will not be useful.

The restructuring described in Chapter 4 could be implemented to be rea-
sonably fast to perform, but nevertheless it would not be desirable to do this
restructuring every time that the system is changed. Programmers get used to
the inheritance hierarchy, and so changes should not be made too often. Also,
for each restructuring the user would have to specify which objects to include.
Therefore other techniques could be employed, which are faster and incremental,
but do not necessarily produce optimal hierarchies or handle all situations. Some
restructurings which may be suitable are discussed in Chapter 7.

Using an incremental algorithm for adding or modifying objects in a hierarchy,
such as the algorithm described in [Dicky96], is not practical as the hierarchy has
to start in a particular state. Also, [Dicky96] considers complete hierarchies
rather than partial hierarchies (see Section 4.3) so cannot be prevented from
restructuring objects which the user wants to remain unchanged.

The question of the validity of automatic method factoring is difficult to an-
swer. The amount of factoring is a matter of personal preference, and so there

cannot be claimed to be a ‘correct’ factoring of methods. Section 6.3 discusses

CHAPTER 8. CONCLUSIONS 216

whether the factoring methods created by Guru are easily understood in practice,
and suggests that more work is needed.

Further work is also required to reduce the limitations of Guru’s method
refactoring. If the system is made capable of factoring methods or expressions
in different ways, then it will have to be able to decide which refactoring to
use. Similarly, as more factoring becomes possible, the system will either have
to decide whether a potential refactoring is worth applying, given that some
programmers will not appreciate too much refactoring, or it should provide the
ability to display source code as if inlining has been performed, as described in
Section 5.6. Also, there may be a limit to the amount of refactoring that can be
performed in an acceptable amount of time.

More refactoring could be possible by using a more sophisticated comparison
of expressions than simply examining their sequence of message sends. For exam-
ple, by inlining expressions, superficially different expressions or methods which
have the same effect could be refactored [Ungar94a]. Furthermore, if it can be de-
termined which methods are private (only executed due to messages sent to self),
then these methods could be removed if all message sends which cause them to
execute are removed through inlining. This would allow better refactoring of the
public methods. Similarly, it might be possible to determine that expressions are
equivalent even if the order of message sends is different. Sophisticated analysis
of code is increasingly performed by optimising compilers; a refactoring system
could benefit from reusing the analysis of such compilers.

The results described in Chapter 6 from applying Guru to Self inheritance hier-
archies are very encouraging. However, further experiments should be undertaken
to evaluate Guru more thoroughly. For example, evaluating the effectiveness of
Guru on initially very badly designed Self code could provide useful insights into
areas which require further improvement. Such an experiment was undertaken
with a previous version of Guru [Moore95], and the results indicated the Guru

may be useful for assisting in the identification of the code which most requires

CHAPTER 8. CONCLUSIONS 217

improvement, rather than actually producing well designed hierarchies. Another
useful experiment may be to apply Guru to Smalltalk hierarchies which have been
translated into Self using Wolczko’s ‘Smalltalk in Self’ translator [Wolczko96].

Complementary tools have been constructed to provide simple program anal-
yses, such as gathering metrics, and user interface tools to make them easy to
use. However, the metrics and analyses are of limited usefulness. The restruc-
turings provided as alternatives to those described in Chapters 4 and 5 are also
limited, but do find and remove some unnecessary and incorrect code. Two of
the restructurings, ‘removing overrides unnecessarily’ and ‘moving same sibling
slots’ can be applied globally without user intervention as they clearly improve
code. Together, they identified and removed over 1% of the slots in the standard
Self image. Although this is a small percentage, it was higher than expected. If
the standard image is better quality than average code then this figure should
be expected to increase when these restructurings are used on average or lower
quality code.

The Dynamic Analysis Stripper allows applications to be extracted from the
Self programming environment. However, it does not guarantee to correctly iden-
tify all the necessary code, and the current implementation is not very robust.
Nevertheless, it has been used successfully for extracting the restructuring tool
described in Chapters 4 and 5, and overcomes some of the limitations of similar
tools which use static analysis.

Despite advances in software technology, in particular the increasing popu-
larity of object-oriented programming, building software remains difficult and
time-consuming; there are still no silver bullets [Brooks87]. Tools should be built
which incorporate the restructurings implemented by Guru (see Chapters 4, 5
and 7) with those suggested by others (see Sections 3.8, 4.11 and 5.8). In the
future, restructuring tools may become part of the standard programming en-
vironments of systems, providing an improvement in productivity by reducing

the effort needed to handle implementation details, thus allowing programmers

CHAPTER 8. CONCLUSIONS 218

to concentrate on the most important aspect of software construction, that is,

defining the correct behaviour of the software.

Bibliography

[Agesen93| Ole Agesen, Jens Palsberg and Michael I. Schwartzbach Type In-
ference of Self: Analysis of Objects with Dynamic and Multiple In-
heritance. In Proceedings of ECOOP 93, (LNCS 707, pages 247-267)
Springer-Verlag, 1993.

[Agesen94| Ole Agesen and David Ungar. Sifting Out the Gold: Delivering
Compact Applications from an Exploratory Object-Oriented Program-
ming Environment. In Proceedings of OOPSLA 9/, (SIGPLAN Notices
29(10), pages 355-370) ACM, 1994.

[Agesen95] Ole Agesen. The Cartesian Product Algorithm: Simple and Pre-
cise Type Inference of Parametric Polymorphism. In Proceedings of

ECOOP 95, (LNCS 952, pages 2-26) Springer-Verlag, 1995.

[Agesen96] Ole Agesen. Concrete Type Inference: Delivering Object-Oriented
Applications. PhD thesis, Stanford University (also published as Sun
Microsystems Laboratories Technical Report SMLI TR-96-52, 1996),
1995.

[Anderson90] B. Anderson and S. Gossain. Hierarchy evolution and the software
lifecycle. In Proceedings of TOOLS 90, pages 41-50, Prentice Hall,
1990.

219

BIBLIOGRAPHY 220

[Bergstein91] Paul L. Bergstein. Object-Preserving Class Transformations. In
Proceedings of OOPSLA 91, (SIGPLAN Notices 26(11), pages 299-
313) ACM, 1991.

[Biggerstaff89] Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse.
In IEEE Computer 22(7), pages 36-49, IEEE, 1989.

[Brantl] World wide web site for the Refactoring Browser.
http://st-www.cs.uiuc.edu/users/brant/Refactory /-

RefactoringBrowser.html

[Brant2] World wide web site for SmallLint.
http://st-www.cs.uiuc.edu/users/brant/Refactory/Lint.html

[Brooks75] Frederick P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley,
1975.

[Brooks87] Frederick P. Brooks, Jr. No Silver Bullet - Essence and Accidents of
Software Engineering. In IEEE Computer 20(4), pages 10-19, IEEE,
1987.

[Budd91] Timothy A. Budd. An Introduction to Object-Oriented Programming.
Addison-Wesley, 1991.

[Canfora93] G. Canfora, A. Cimitile and M. Munro. A Reverse Engineering
Method for Identifying Reuseable Abstract Data Types. In Proceedings
of the Working Conference on Reverse Engineering pages 73-82, IEEE,
1993.

[Canfora96] G. Canfora, A. Cimitile and M. Munro. An Improved Algorithm for
Identifying Objects in Code. In Software - Practice and Ezrperience
26(1), pages 25-48, John Wiley & Sons, 1996.

BIBLIOGRAPHY 221

[Casais90] Eduardo Casais. Managing Class Evolution in Object-Oriented Sys-
tems. In Object Management, Centre Universitaire d’Informatique,

Geneve, 1990.

[Casais92] Eduardo Casais. An Incremental Class Reorganization Approach.
In Proceedings of ECOOP 92, (LNCS 615, pages 114-132) Springer-
Verlag, 1992.

[Casais94] Eduardo Casais. Automatic reorganization of object-oriented hier-
archies: a case study. In Object Oriented Systems 1, pages 95-115,
Chapman & Hall, 1994.

[Casais95| Eduardo Casais. Managing Class Evolution in Object-Oriented Sys-
tems. Prentice Hall, 1995.

[Chae96] Heung-Seok Chae. Restructuring of Classes and Inheritance Hierarchy
in Object-Oriented Systems. MSc thesis, Korea Advanced Institute of
Science and Technology, 1996.

[Chambers91] Craig Chambers, David Ungar, Bay-Wei Chang and Urs Holzle.
Parents are Shared Parts of Objects: Inheritance and Encapsulation in
Self. In Lisp and Symbolic Computation, 4(3), pages 207-222, Kluwer
Academic Publishers, 1991.

[Chambers93] Craig Chambers. The Cecil Language: Specification and Rationale.
Technical Report #93-03-05, Department of Computer Science and
Engineering, University of Washington, 1993.

[Cheeseman88] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will
Taylor and Don Freeman. Autoclass: a Bayesian Classification sys-
tem. In Proceedings of the Fifth International Conference on Machine

Learning, 1988.

BIBLIOGRAPHY 222

[Chidamber94] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite

[Cook90)]

[Cook92]

[Dicky95]

[Dicky96]

[Dony92]

for Object Oriented Design. In IEEE International Transactions on
Software Engineering, pages 476-493, IEEE, 1994.

William R. Cook, Walter Hill and Peter Canning. Inheritance is not
Subtyping. In Conference Record of the 17th Annual ACM Symposium
on Principles of Programming Languages, ACM, 1990.

William R. Cook. Interfaces and Specifications for the Smalltalk-80
Collection Classes. In Proceedings of OOPSLA 92, (SIGPLAN Notices
27(10), pages 1-15) ACM, 1992.

Herve Dicky, Christophe Dony, Marianne Huchard and Therese Li-
bourel. ARES, Adding a class and REStructuring Inheritance Hier-
archies. In 11 iémes journées Bases de Données Avancées, Nancy

(France), 1995.

Herve Dicky, Christophe Dony, Marianne Huchard and Therese Li-

bourel. On Automatic Class Insertion with Overloading. To appear in

Proceedings of OOPSLA 96, ACM, 1996.

Christophe Dony, Jacques Malenfant and Pierre Cointe. Prototype-
Based Languages: From a New Taxonomy to Constructive Proposals
and Their Validation. In Proceedings of OOPSLA 92, (SIGPLAN No-
tices 27(10), pages 201-217) ACM, 1992.

[ENVY/QA] ENVY/QA documentation. Object Technology International Inc,

Ottawa, Canada, 1996.

[Fisher87] Douglas H. Fisher. Knowledge Acquisition Via Incremental Concep-

tual Clustering. In Machine Learning 2, pages 139-172, Kluwer Aca-
demic Publishers, 1987.

BIBLIOGRAPHY 223

[Gamma94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[Garey79] M. R. Garey and D. S. Johnson. Computers and Intractability. Free-
man, 1979.

[Gibbs90] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz
and Xavier Pintado. Class Management for Software Communities. In

Communications of the ACM 33(9), pages 90-103, ACM, 1990.

[Godin93] Robert Godin and Hafedh Mili. Building and Maintaining Analysis-
Level Class Hierarchies using Galois Lattices. In Proceedings of OOP-
SLA 93, (SIGPLAN Notices 28(10), pages 394-410) ACM, 1993.

[Goldberg90] Adele Goldberg and David Robson. Smalltalk-80: The Language.
Addison-Wesley, 1990.

[Griswold93] William G. Griswold and David Notkin. Automated Assistance for
Program Restructuring. In ACM Transactions on Software Engineer-

ing and Methodology 2(3), pages 228-269, ACM, 1993.

[Guru] World wide web site for Guru.

http://www.cs.man.ac.uk/ ivan/guru.html

[Hoeck93] Bernd H. Hoeck. A Framework for Semi-Automatic Reorganisation of
Object-Oriented Design and Code. MSc thesis, University of Manch-
ester, 1993.

[Holsheimer94] Marcel Holsheimer and Arno Siebes. Data mining: The search
for knowledge in databases. Technical Report CS-R9406, Centrum voor
Wiskunde en Informatica, 1994.

BIBLIOGRAPHY 224

[Holzle91] Urs Holzle, Craig Chambers and David Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages with Polymorphic In-
line Caches. In Proceedings of ECOOP 91, (LNCS 512, pages 21-38)
Springer-Verlag, 1991.

[Holz1e94] Urs Hélzle and David Ungar. A Third Generation Self Implementa-
tion: Reconciling Responsiveness with Performance. In Proceedings of

OOPSLA 94, (SIGPLAN Notices 29(10), pages 229-243) ACM, 1994.

[Hiirsch93] Walter L. Hiirsch, Karl J. Lieberherr and Sougata Mukherjea. Object-
Oriented Schema Extension and Abstraction. In ACM Computer Sci-

ence Conference, Symposium on Applied Computing, ACM, 1993.

[Johnson88| Ralph E. Johnson and Brian Foote. Designing Reusable Classes.
In Journal of Object-Oriented Programming 1(2), pages 22-35, SIGS
Publications, 1988.

[Johnson91] Ralph E. Johnson and Jonathan M. Zweig. Delegation in C++.
In Journal of Object-Oriented Programming 4(7), pages 31-35, SIGS
Publications, 1991.

[Jones90] Clifford B. Jones. Systematic software development using VDM. Pren-
tice Hall, 1990.

[Keene89] Sonya E. Keene Object-Oriented Programming in Common Lisp: A
Programmer’s guide to CLOS. Addison-Wesley, 1989.

[Lano93] Kevin Lano and Howard Haughton. Reverse Engineering and Soft-
ware Maintenance: A Practical Approach. McGraw-Hill, International

Series in Software Engineering, 1993.

[Lieberherr88] Karl J. Lieberherr, Ian M. Holland, and Arthur J. Riel. Object-
Oriented Programming: An Objective Sense of Style. In Proceedings of
OOPSLA 88, (SIGPLAN Notices 23(11), pages 323-334) ACM, 1988.

BIBLIOGRAPHY 225

[Lieberherr89] Karl J. Lieberherr, lan M. Holland. Assuring Good Style for
Object-Oriented Programs. In IEEFE Software 6(5), pages 38-48, IEEE,
1989.

[Lieberherr91] Karl J. Lieberherr, Paul Bergstein, and Ignacio Silva-Lepe. From
Objects to Classes: Algorithms for Optimal Object-Oriented Design.
In Software Engineering Journal 6(4), pages 205-228, BCS/IEE, 1991.

[Lieberman86] Henry Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. In Proceedings of OOPSLA 86,
(SIGPLAN Notices 21(11), pages 214-223) ACM, 1986.

[Light93] Marc Light. Classification in Feature-based Default Inheritance Hier-
archies. Technical Report 473, The University of Rochester 1993.

[Meyer88] Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall, 1988.

[Meyer90] Bertrand Meyer. Tools for the new culture: lessons from the design of
the Eiffel libraries. In Communications of the ACM 33(9), pages 68-88,
ACM, 1990.

[Meyer92] Bertrand Meyer. Fiffel: The Language. Prentice Hall, 1992.

[Mineau90] Guy W. Mineau, Jan Gecsei and Robert Godin. Structuring Knowl-
edge Bases Using Automatic Learning. In Proceedings of the sixth

International Conference on Data Engineering, pages 274-280, IEEE,
1990.

[Mineau95] Guy W. Mineau and Robert Godin. Automatic Structuring of Knowl-
edge Bases by Conceptual Clustering. In IEEE Transactions on Knowl-
edge and Data Engineering 7(5), pages 824-829, IEEE, 1995.

[Méller93] K. H. Moller and D. Paulish. Software Metrics - A Practitioner’s
Guide to Improved Software Development. Prentice Hall, 1993.

BIBLIOGRAPHY 226

[Moore94| Ivan R. Moore, Mario Wolczko, and Trevor Hopkins. Babel - A Trans-
lator from Smalltalk into CLOS. In TOOLS USA 1994, (TOOLS 14,
pages 425-433) Prentice Hall, 1994.

[Moore95| Ivan R. Moore. Guru - a Tool for Automatic Restructuring of Self
Inheritance Hierarchies. In TOOLS USA 1995, (TOOLS 17, pages
267-275) Prentice Hall, 1995.

[Moore96a] Ivan R. Moore and Tim P. Clement. A Simple and Efficient Algorithm
for Inferring Inheritance Hierarchies. In TOOLS Europe 1996, (TOOLS
19, pages 173-184) Prentice Hall, 1996.

[Moore96b] Ivan R. Moore. Automatic Inheritance Hierarchy Restructuring and
Method Refactoring. To appear in Proceedings of OOPSLA 96, ACM,
1996.

[Ong93] C.L.Ongand W. T. Tsai. Class and object extraction from imperative
code. In Journal of Object-Oriented Programming 6(1), pages 58-68,
SIGS Publications, 1993.

[Opdyke92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign (Technical Report
UIUC-DCS-R-92-1759), 1992.

[Opdyke93] William F. Opdyke and Ralph E. Johnson. Creating Abstract Su-
perclasses by Refactoring. In Proceedings of CSC ’93: The ACM 1993
Computer Science Conference pages 66-73, ACM, 1993.

[ParcPlace] Objectworks\ Smalltalk User’s Guide (second edition). ParcPlace
(now ParcPlace-Digitalk), Sunnyvale, California, USA, 1992.

[Pedersen89] Claus H. Pedersen. Extending Ordinary Inheritance Schemes to
Include Generalization. In Proceedings of OOPSLA 89, (SIGPLAN
Notices 24(10), pages 407-417) ACM, 1989.

BIBLIOGRAPHY 227

[Plato] Plato. The Republic. (Translation by Desmond Lee), Penguin Books,
1987.

[Pun89] Winnie W. Y. Pun and Russel L. Winder. Automating Class Hierar-
chy Graph Construction. Research Note RN/89/23, University College
London, 1989.

[Pun90] Winnie W. Y. Pun. A Design Method for Object-Oriented Program-
ming. PhD thesis, University College London, 1990.

[Rak90] Edward J. Rak. Two redesign tools for Smalltalk. MSc thesis, Univer-
sity of Illinois at Urbana-Champaign, 1990.

[Sakkinen88] Markku Sakkinen. Comments on the law of Demeter and C++. In
Proceedings of OOPSLA 88, (SIGPLAN Notices 23(12), pages 38-44)
ACM, 1988.

[Schmidt93] Gunther Schmidt and Thomas Strohlein. Relations and Graphs.
Discrete Mathematics for Computer Scientists. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1993.

[Self4.0] Ole Agesen, Lars Bak, Craig Chambers, Bay-Wei Chang, Urs Holzle,
John Maloney, Randall B. Smith, David Ungar, Mario Wolczko. The
Self 4.0 Programmer’s Reference Manual. Sun Microsystems Labora-

tories Inc. and Stanford University, 1995.

[Smith95] Randall B. Smith, John Maloney and David Ungar. The Self-4.0 User
Interface: Manifesting a System-wide Vision of Concreteness, Unifor-
mity, and Flexibility. In Proceedings of OOPSLA 95, (SIGPLAN No-
tices 30(10), pages 47-60) ACM, 1995.

[Stein87] L. A. Stein. Delegation is inheritance. In Proceedings of OOPSLA 87,
(SIGPLAN Notices 22(12), pages 138-146) ACM, 1987.

BIBLIOGRAPHY 228

[Ungar87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In
Proceedings of OOPSLA 87, (SIGPLAN Notices 22(12), pages 227-241)
ACM, 1987.

[Ungar91] David Ungar, Craig Chambers, Bay-Wei Chang and Urs Hélzle. Orga-
nizing Programs Without Classes. In Lisp and Symbolic Computation,

4(3), pages 223-242, Kluwer Academic Publishers, 1991.

[Ungar94a] David Ungar. Private communication. Sun Microsystems Laborato-

ries Inc, Mountain View, California, 1994.
[Ungar94b] David Ungar. self-interest@self.stanford.edu mail group, 1994.

[Ungar95] David Ungar. Annotating Objects for Transport to Other Worlds. In
Proceedings of OOPSLA 95, (SIGPLAN Notices 30(10), pages 73-87)
ACM, 1995.

[Ward95] Martin P. Ward and Keith H. Bennett. Formal Methods for Legacy
Systems. In Journal of Software Maintenance: Research and Practice

7(3), pages 203-219, 1995.

[Wolczko96] Mario 1. Wolczko. self includes: Smalltalk. ECOOP 96, Prototype-
based languages workshop, (not published), 1996.

[Wolff94] J. Gerard Wolff. Towards a New Concept of Software. In Software
Engineering Journal 9(1), pages 27-38, BCS/IEE, 1994.

[Zimmer95] Walter Zimmer. Using Design Patterns to Reorganize an Object-
Oriented Application. In Architectures and Processes for System-
atic Software Construction, (FZI-Publication 1/95, pages 171-183),

Forschungszentrum Informatik an der Universitat Karlrsruhe, 1995.

Appendix A

Formal descriptions of the IHI

algorithm

This appendix provides a formal description of the IHI criteria, the IHI algorithm,
and the computational complexity of the THI algorithm. All three sections of the

appendix were written by Tim Clement.

A.1 A formal description of the criteria for in-
ferred hierarchies

To supplement the informal description of the criteria satisfied by the inheritance
hierarchies produced by the IHI algorithm given in Section 3.2, we provide here
a formal definition. It will be presented using the syntax of VDM [Jones90],
although a familiarity with standard set notation should be enough to read it.
We need to define some graph theoretic notions. Graphs themselves can be

modelled as sets of pairs of nodes, each pair representing an edge.
Graph = (Node x Node)-set

In this model, one graph is a subgraph of another if its edges are a subset of the

other set. We can define a graph to be a closure if the set of edges is closed under

229

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 230

transitivity.
Closure = Graph
where
inv-Closure(c) 2
Vn1, no, n3: Node -

(n1,m2) € c A (ng,n3) € c =

(ni,m3) € ¢
The transitive closure of a graph is the smallest closure containing that graph.
(") (g: Graph) c: Closure
post ¢ C ¢ AV : Closure - g C ¢’ = ¢ C ¢
The reflexive transitive closure adds edges from each node to itself

") (g) 2 gTU{n+ n|n:Node}

An inheritance hierarchy is a graph where the nodes are traits objects or replace-
ment objects (to be denoted by the sets C and O respectively) and there are no
loops, in conjunction with a mapping from the nodes to sets of features (to be

denoted by the set F).
Node =C | O
Hierarchy = Graph x (Node = F-set)

where

inv-Hierarchy(i,f) £ (Vn: Node-(n,n) ¢ it) A
dom f = [J{{n1, n2} | (n1, n2) € dom i}

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 231

The extra criteria for the inheritance hierarchies produced by the IHI algorithm

are as follows:

0. They must represent the given object definitions. Object definitions can be

modelled as a map from objects to the sets of features they contain.

ObjectDef = O —» F-set

The object definition represented by a hierarchy is found by associating with
each object all the features from all its ancestors in the hierarchy (including

itself).
objects : Hierarchy — ObjectDef

objects(i, f) 2 {ow— U{f(n) | n: Node - (n,0) € i*} |
0:0-0€domf}

1. Features appear at a single node

unique-features(i, f) 2
Vfs1,fso €erng f -
fanfa#{} = fsi=fs

2. The number of internal nodes must be as small as possible for the set of

objects represented.

minimal(i,f) &
V(4', f"): Hierarchy -
objects(i, f) = objects(i', f') =

card f' < card f

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 232

3. The hierarchy should contain all inheritance consistent with the objects.

all-inheritance(i, f) 2
Vnq, ng: Node -
(Vo: O -
(ng,0) €T = (my,0) €t

) = ('I’Ll,ng) € 7;+

4. Links implied by transitivity should not be explicit in the graph

no-transitivity (i, f) 2
V(’fll, ’I'LQ) €1-

—3ng: Node - (ny, n3) € i A (n3, ng) € i

5. Objects are leaves

objects-are_leaves(i,f) £ —Jo: O,n: Node - (0,n) € i

We can justify the claim that these conditions define the hierarchy for a given
set of objects uniquely by considering first the nodes and then the edges of the
graph.

The set of nodes must provide all the features that the objects need. Further,
since features occur in at most one node, each node must be inherited by all
the objects requiring any of its features. This means that nodes can contain
more than one feature only if these features appear in all the objects in which
any of them appear. Unwanted features must be in uninherited nodes, and if
the number of nodes is minimal, there will be none of these. The nodes thus
partition the features. Minimality also requires that features which do always
appear together in the objects share a node: otherwise, the nodes which contain
them can be merged. The partition (and hence the number of nodes and the

features associated with them) is thus uniquely defined.

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 233

Turning to inheritance, it is clear that objects can only inherit from nodes
which provide the features they need. The third condition requires that the
transitive closure of the inheritance is the largest graph consistent with this, and
hence defines it uniquely. In any transitive closure graph, we can determine which
edges are replaceable by paths, so the smallest graph generating that transitive
closure is also uniquely defined.

The effect of the fifth condition is to add an extra feature to each object, of
“being itself”. Its presence or absence does not affect the uniqueness of the result,

but does affect the minimum number of nodes required in the inheritance graph.

A.2 A formal definition of the inheritance hier-
archy inference algorithm

In giving a formal version of the algorithm described in English and diagrams
above, we shall assume that we start with the objects represented as a value of
the type ObjectDef above.

The first step of the algorithm transforms object definitions to grouping
graphs, where a grouping graph is a relation between features and objects, which

we can model as a set of (feature,object) pairs.
GroupingGraph = (F x O)-set

The transformation associates each object with the features it contains.
step; : ObjectDef — GroupingGraph

stepi(od) 2

{(f,0) |
f:F,0:0-0€domodAf € od(o)}

A mapping graph is another way of looking at the same information: it associates

features with the sets of replacement objects which contain them. Sets containing

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 234

more than one replacement object correspond to the traits objects of the informal

description.
MappingGraph = F =5 O-set

The second step just creates this new representation from the old one:
steps : GroupingGraph — MappingGraph
stepa(g9) 2 {f—{o]0:0-(f,0) € g9} | f: F}

The object sets of the mapping graph form the nodes of the inheritance graph,

and the edges are represented as pairs as above.
InheritanceGraph = (O-set x O-set)-set

The third step of the algorithm constructs an inheritance graph from a mapping
graph by putting all possible inheritance edges into the graph: that is, those

linking nodes to nodes which represent any proper subset of their objects.
steps : MappingGraph — Inheritance Graph

steps(mg) &
let nodes = rngmgU {{o} | 0: O} in

{(w,m) | v1,v2 € nodes A vy C vy}

(We add a node corresponding to each object so that the objects will be repre-
sented by terminal nodes of the final graph even if they have no unique features.)

The final step prunes the inheritance graph of those edges implied by transi-
tivity: since these edges are all in the graph just constructed, they are easy to

find.

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 235

stepy : InheritanceGraph —

InheritanceGraph

steps(tg) 2
{(v1, v)
| (v, 1) € tg A
—Jug: O-set - (vy, v3) € tg A (v3,v2) € tg

}

Our representation of the inheritance graph lacks the information on which fea-
tures are associated with each vertex of the inheritance graph, which would be
needed for defining the traits objects. This can easily be recovered by inverting

the mapping graph.

wnvert : MappingGraph —
(O-set — F-set)

invert(mg) 2 {os— {f |f € dommgA mg(f) = os} |
os € rng mg U {{o} | 0: O}}

A.3 Complexity of the inheritance hierarchy in-
ference algorithm

If the IHI algorithm is to be put to practical use, its complexity should be esti-
mated. There are three things which together characterise the size of the input:
the number of objects to be considered, o; the total number of features they
define (that is, the sum of the number of features each object contains), f; and
the number of distinct features, d. To see how these affect the running times, the
graph manipulations of the abstract algorithm must be described in more detail.

If the input is presented object by object, an ObjectVertex can be created
for each. For each feature of the object, the ObjectVertex is added to a list

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 236

in the corresponding FeatureVertex: a new FeatureVertex is created each time
a new feature is encountered. There are f features to be considered. If the
FeatureVertices are arranged as a balanced tree ordered by feature, the time
for each insertion is O(logf), so the total time taken to build this structure is
O(flogf). It also takes O(o0) time to create the ObjectVertices, and O(d) time
to create the FeatureVertices, but since the number of features must be at least
as large as the number of objects and the number of distinct features, the sorting
time dominates this step. The ObjectVertices will appear in the lists at each
FeatureVertex in the order in which they were created.

The mapping graph can be constructed by a pass over this structure which
creates and links the TraitsVertices. For each FeatureVertex, the set of ObjectVer-
tices associated with that vertex is compared against those in all previously cre-
ated TraitsVertices: if one is found to be equal then the FeatureVertex is linked to
that TraitsVertex, while if the new set is equal to none of them a new TraitsVertex
is created and labelled with the new set, and the FeatureVertex linked to that.
(Where only one object has a feature, no TraitsVertex needs to be created and
the link should be to the ObjectVertex instead.) Since the ObjectVertices appear
in the same order at each FeatureVertex, the set comparison can be done in time
proportional to the size of the smaller set by comparing corresponding elements
in the two lists. The worst case here is when the sets are equal. There are d sets,
and if the set sizes are ny,ng,...,ng, the time taken is ¢, %7 .. min(n;, n;).
But ©¢_,n; = f, the total number of features. This makes the worst case of the
sum the case when n; = f/d: making one set 7 larger makes another set j smaller,
and so min(n;, n;) will contribute less to the overall sum. The worst case time is
thus X, %9_, f/d = f(d +1)/2, which is O(fd).

Constructing the InheritanceEdges between the TraitsVertices is straightfor-
ward. There are at most d TraitsVertices (since they partition the distinct fea-

tures), and they must be compared pairwise to see if one is inherited by a subset

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 237

of the objects that inherit the other. The comparison can be done in time pro-
portional to the size of the proposed superset by comparing the labels, so the
total time taken is Elezj‘-l:i 411 where the n; are the set sizes as before, and this
is readily seen to be O(fd).

To start the next step, the TraitsVertex links in each TraitsVertex should be
sorted into some arbitrary order: this can take O(d.d log d) time, since each of the
d vertices may have O(d) links in it. In the algorithm of Section 3.3 for pruning
the unwanted InheritanceEdges, all (i.e. O(d)) TraitsVertices must be considered
as grandparents. Each may have InheritanceEdges from O(d) TraitsVertices and
O(0) ObjectVertices. The TraitsVertices may in turn have O(d) TraitsVertices
and O(o) ObjectVertices as children. These sets must be subtracted from the sets
of children of the grandparent. The ordering of ObjectVertices and TraitsVertices
in each TraitsVertex allows the common replacement objects to be marked as
deleted in time O(0) and the common traits objects to be marked in O(d), so
the total time is O(o + d). Since this must be done O(d?) times in the worst
case, the total time is O(d?*(o + d)).

Giving an overall complexity means relating o, f and d. It was remarked
above that the number of features f must be at least as great as the number of
objects o and the number of distinct features d, but there are no other necessary
constraints. However, if each vertex introduces exactly one feature, then the
number of features that an object inherits will be given by the depth of the
hierarchy. If the number of children from each TraitsVertex in a hierarchy is fixed
at b, then the depth of the hierarchy will increase with the logarithm (to base b)
of the number of objects. Hence f is O(olog o) The number of distinct features
is the number of vertices, which is O(0). The complexities of the steps then
become O(o(logo)?), O(0?logo), O(0*logo) and O(0?), which suggests that
the algorithm as a whole should be O(03). However, under these assumptions
the number of children of a TraitsVertex is constant rather than O(d), and so the

InheritanceEdge removing step is O(0), and the overall complexity is O(0?log o).

APPENDIX A. FORMAL DESCRIPTIONS OF THE IHI ALGORITHM 238

In practice, the number of children might be expected to grow slowly with the
number of objects as new subtrees are grafted on to some point in the existing
hierarchy. Experiments with the algorithm on randomly generated sets of objects
suggest slightly better than O(03) performance, which suggests that it should be
practical for reasonably large collections of objects.

The pruning step described in Section 3.8 and required to construct hierar-
chies meeting the minimum inheritance condition requires time exponential in
the number of children at each vertex. Since in the worst case there may be O(0)
children at a vertex this makes the algorithm as a whole exponential, and because
the algorithm is in effect solving the minimum cover problem at each vertex and
this is known to be NP-complete [Garey79], this is probably a lower bound on the
problem. [Lieberherr91] show that minimum cover problems can be encoded as
minimal inheritance problems to show that no alternative pruning strategy can
improve on this in the worst case, and as a result adopt an algorithm that is not
optimal by their own criteria. However, the arguments above suggest that even
this pruning may well be feasible in practice if it is deemed necessary after the

arguments to the contrary in Section 3.8.

